skip to content
Spectral theory of operators on hilbert spaces Preview this item
ClosePreview this item
Checking...

Spectral theory of operators on hilbert spaces

Author: Carlos S Kubrusly
Publisher: New York : Birkhäuser, ©2012.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This work is intended to¡provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and¡recent aspects of theory, it¡can serve as¡a modern textbook for a first graduate course in the subject.¡The coverage of topics is thorough, exploring various intricate points and hidden features often left untreated. The book begins with a primer on Hilbert space theory,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Carlos S Kubrusly
ISBN: 9780817683283 0817683283
OCLC Number: 794928599
Description: 1 online resource
Contents: Preliminaries --
Spectrum --
Spectral Theorem --
Functional Calculus --
Fredholm Theory.
Responsibility: Carlos S. Kubrusly.

Abstract:

Here is a concise introduction to spectral theory of Hilbert space operators. It presents recent theoretical aspects and features detailed proofs. The coverage of topics is thorough and explores  Read more...

Reviews

Editorial reviews

Publisher Synopsis

From the reviews: "Kubrusly's book ... situates the spectral theorem in a very interesting broader context. ... Kubrusly intends the book for a one-semester graduate course and ... he closes each of Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/794928599> # Spectral theory of operators on hilbert spaces
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "794928599" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Thing/operator_theory> ; # Operator theory.
    schema:about <http://id.worldcat.org/fast/956785> ; # Hilbert space
    schema:about <http://dewey.info/class/515.7222/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Thing/mathematics> ; # Mathematics.
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Topic/mathematical_concepts> ; # Mathematical Concepts
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Thing/algebra> ; # Algebra.
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Thing/non_associative_rings_and_algebras> ; # Non-associative Rings and Algebras.
    schema:about <http://id.worldcat.org/fast/1129072> ; # Spectral theory (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Topic/mathematics> ; # Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/1118669337#Thing/functional_analysis> ; # Functional analysis.
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/85633669> ; # Carlos S. Kubrusly
    schema:datePublished "2012" ;
    schema:description "This work is intended to¡provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and¡recent aspects of theory, it¡can serve as¡a modern textbook for a first graduate course in the subject.¡The coverage of topics is thorough, exploring various intricate points and hidden features often left untreated. The book begins with a primer on Hilbert space theory, summarizing the basics required for the remainder of the book and establishing unified notation and terminology.¡After this, standard spectral results for (bounded linear) operators on Banach and Hilbert spaces, including the classical partition of the spectrum and spectral properties for specific classes of operators, are discussed. A study of the spectral theorem for normal operators follows, covering both the compact and the general case, and proving both versions of the theorem in full detail. This leads into an investigation¡of functional calculus for normal operators and Riesz functional calculus, which in turn is followed by Fredholm theory and compact perturbations of the spectrum, where a finer analysis of the spectrum is worked out. Here, further partitions involving the essential spectrum, including the Weyl and Browder spectra, ¡are introduced.¡The final¡section of the book¡deals with¡Weyl's and Browder's theorems and¡provides a look at¡very recent results.¡ Spectral Theory of Operators on¡Hilbert Spaces¡is addressed to an interdisciplinary¡audience¡of graduate students in mathematics, ¡statistics, economics, engineering, and physics. It¡will be useful for working mathematicians using spectral theory of Hilbert space operators, as well as¡for scientists wishing to¡harness the applications of¡this theory."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1118669337> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1118669337#CreativeWork/> ;
    schema:name "Spectral theory of operators on hilbert spaces"@en ;
    schema:productID "794928599" ;
    schema:url <http://dx.doi.org/10.1007/978-0-8176-8328-3> ;
    schema:url <http://site.ebrary.com/id/10653180> ;
    schema:url <https://ebookcentral.proquest.com/lib/buffalo/detail.action?docID=994127> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-0-8176-8327-6> ;
    schema:url <https://grinnell.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-0-8176-8328-3> ;
    schema:workExample <http://dx.doi.org/10.1007/978-0-8176-8328-3> ;
    schema:workExample <http://worldcat.org/isbn/9780817683283> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/794928599> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1118669337#Thing/functional_analysis> # Functional analysis.
    a schema:Thing ;
    schema:name "Functional analysis." ;
    .

<http://experiment.worldcat.org/entity/work/data/1118669337#Thing/non_associative_rings_and_algebras> # Non-associative Rings and Algebras.
    a schema:Thing ;
    schema:name "Non-associative Rings and Algebras." ;
    .

<http://experiment.worldcat.org/entity/work/data/1118669337#Thing/operator_theory> # Operator theory.
    a schema:Thing ;
    schema:name "Operator theory." ;
    .

<http://experiment.worldcat.org/entity/work/data/1118669337#Topic/mathematical_concepts> # Mathematical Concepts
    a schema:Intangible ;
    schema:name "Mathematical Concepts"@en ;
    .

<http://id.worldcat.org/fast/1129072> # Spectral theory (Mathematics)
    a schema:Intangible ;
    schema:name "Spectral theory (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/956785> # Hilbert space
    a schema:Intangible ;
    schema:name "Hilbert space"@en ;
    .

<http://viaf.org/viaf/85633669> # Carlos S. Kubrusly
    a schema:Person ;
    schema:birthDate "1947" ;
    schema:familyName "Kubrusly" ;
    schema:givenName "Carlos S." ;
    schema:name "Carlos S. Kubrusly" ;
    .

<http://worldcat.org/entity/work/data/1118669337#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/794928599> ; # Spectral theory of operators on hilbert spaces
    .

<http://worldcat.org/isbn/9780817683283>
    a schema:ProductModel ;
    schema:isbn "0817683283" ;
    schema:isbn "9780817683283" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.