skip to content
SPSS 14.0 advanced statistical procedures companion Preview this item
ClosePreview this item

SPSS 14.0 advanced statistical procedures companion

Author: M J Norušis
Publisher: Upper Saddle River, N.J. : Prentice Hall, ©2005.
Edition/Format:   Print book : CD for computer   Computer File : EnglishView all editions and formats

(not yet rated) 0 with reviews - Be the first.

More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Genre/Form: Guides, manuels, etc
Document Type: Book, Computer File
All Authors / Contributors: M J Norušis
ISBN: 9780131747005 0131747002
OCLC Number: 148260462
Notes: CD-ROM in back pocket.
Description: xiii, 366 pages : illustrations ; 23 cm + 1 CD-ROM
Details: System requirements for accompanying CD-ROM: SPSS, Windows 98, Me, XP or 2000.
Contents: SPSS 14.0 Advanced Statistical Procedures Companion: Chapters1. Model Selection in Loglinear Analysis. Model formulation; parameters in saturated models; hypothesis testing; convergence; goodness-of-fit tests; hierarchical models; generating classes; model selection with backward elimination. 2. Logit Loglinear Analysis. Dichotomous logit model; loglinear representation; parameter estimates; goodness-of-fit statistics; measures of dispersion and association; polychotomous logit model; interpreting parameters; examining residuals; introducing covariates. 3. Multinomial Logistic Regression. Baseline logits; likelihood-ratio tests for models and individual effects; evaluating the model; calculating predicted probabilities; the classification table; goodness-of-fit tests; residuals; pseudo R-square measures; overdispersion; model selection; matched case-control studies. 4. Ordinal Regression. Modeling cumulative counts; parameter estimates; testing for parallel lines; model fit; observed and expected counts; measures of strength of association; classifying cases; link functions; fitting a heteroscedastic probit model; fitting location and scale parameters. 5. Probit Regression. Probit and logit response models; confidence intervals for effective dosages; comparing groups; comparing relative potencies; estimating the natural response rate; multiple stimuli. 6. Kaplan-Meier Survival Analysis. Calculating survival time; estimating the survival function, the conditional probability of survival, and the cumulative probability of survival; plotting survival functions; comparing survival functions; stratified comparisons. 7. Life Tables. Calculating survival probabilities; assumptions; observations lost to follow-up; plotting survival functions; comparing survival functions. 8. Cox Regression. The model; proportional hazards assumption; coding categorical variables; interpreting the regression coefficients; baseline hazard and cumulative survival rates; global tests of the model; checking the proportional hazards assumption; stratification; log-minus-log survival plot; identifying influential cases; examining residuals; partial (Schoenfeld) residuals; martingale residuals; variable-selection methods; time-dependent covariates; specifying a time-dependent covariate; calculating segmented time-dependent covariates; testing the proportional hazards assumption with a time-dependent covariate; fitting a conditional logistic regression model. 9. Variance Components. Factors, effects, and models; model for one-way classification; estimation methods; negative variance estimates; nested design model for two-way classification; univariate repeated measures analysis; using a Mixed Models Approach; distribution assumptions; estimation methods. 10. Linear Mixed Models. Background; Unconditional random-effects models; hierarchical models; random-coefficient model; model with school-level and individual-level covariates; three-level hierarchical model; repeated measurements; selecting a residual covariance structure. 11. Nonlinear Regression. The nonlinear model; transforming nonlinear models; intrinsically nonlinear models; fitting a logistic population growth model; finding starting values; approximate confidence intervals for the parameters;bootstrapped estimates; starting values from previous analysis; linear approximation; computational issues; common models for nonlinear regression; specifying a segmented model. 12. Two-Stage Least-Squares Regression. Demand-price-income economic model; estimation with ordinary least squares; feedback and correlated errors; estimation with two-stage least squares. 13. Weighted Least-Squares Regression. Diagnosing the problem; estimating weights; examining the log-likelihood function; the WLS solution; estimating weights from replicates; diagnostics from the linear regression procedure. 14. Multidimensional Scaling. Data, models, and multidimensional scaling analysis; nature of data analyzed in MDS; measurement level of data; shape of data; conditionality of data; missing data; multivariate data; classical MDS; Euclidean model; details of CMDS; Replicated MDS; Weighted MDS; geometry of the weighted Euclidean model; algebra of the weighted Euclidean model; matrix algebra of the weighted Euclidean model; Weirdness index; flattened weights.
Responsibility: Marija J. Norušis.


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # SPSS 14.0 advanced statistical procedures companion
    a bgn:CD, schema:CreativeWork, schema:Book ;
   library:oclcnum "148260462" ;
   library:placeOfPublication <> ;
   library:placeOfPublication <> ; # Upper Saddle River, N.J.
   schema:about <> ; # SPSS for Windows.
   schema:about <> ;
   schema:about <> ; # Sciences sociales--Méthodes statistiques--Informatique
   schema:about <> ; # Social sciences--Statistical methods
   schema:about <> ; # SPSS (Fichiers (Informatique))
   schema:about <> ; # SPSS
   schema:about <> ; # Data-analyse
   schema:about <> ; # Sciences sociales--Méthodes statistiques--Logiciels
   schema:about <> ; # Social sciences--Statistical methods
   schema:about <> ; # SPSS for Windows.
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "2005" ;
   schema:creator <> ; # Marija J. Norušis
   schema:datePublished "2005" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:name "SPSS 14.0 advanced statistical procedures companion"@en ;
   schema:productID "148260462" ;
   schema:publication <> ;
   schema:publisher <> ; # Prentice Hall
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # SPSS (Fichiers (Informatique))
    a schema:CreativeWork ;
   schema:name "SPSS (Fichiers (Informatique))" ;

<> # Upper Saddle River, N.J.
    a schema:Place ;
   schema:name "Upper Saddle River, N.J." ;

<> # Sciences sociales--Méthodes statistiques--Informatique
    a schema:Intangible ;
   schema:name "Sciences sociales--Méthodes statistiques--Informatique"@fr ;

<> # Sciences sociales--Méthodes statistiques--Logiciels
    a schema:Intangible ;
   schema:name "Sciences sociales--Méthodes statistiques--Logiciels"@fr ;

<> # Social sciences--Statistical methods
    a schema:Intangible ;
   schema:name "Social sciences--Statistical methods"@en ;

<> # Social sciences--Statistical methods
    a schema:Intangible ;
   schema:name "Social sciences--Statistical methods"@en ;

<> # SPSS for Windows.
    a schema:CreativeWork ;
   schema:name "SPSS for Windows." ;

<> # Marija J. Norušis
    a schema:Person ;
   schema:birthDate "1948" ;
   schema:familyName "Norušis" ;
   schema:givenName "Marija J." ;
   schema:givenName "M. J." ;
   schema:name "Marija J. Norušis" ;

    a schema:ProductModel ;
   schema:isbn "0131747002" ;
   schema:isbn "9780131747005" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.