skip to content
Stability Theory by Liapunov's Direct Method Preview this item
ClosePreview this item
Checking...

Stability Theory by Liapunov's Direct Method

Author: N Rouche; P Habets; M Laloy
Publisher: New York, NY : Springer New York, 1977.
Series: Applied mathematical sciences (Springer-Verlag New York Inc.), 22.
Edition/Format:   eBook : Bibliographic data : EnglishView all editions and formats
Database:WorldCat
Summary:
This monograph is a collective work. The names appear ing on the front cover are those of the people who worked on every chapter. But the contributions of others were also very important: C. Risito for Chapters I, II and IV, K. Peiffer for III, IV, VI, IX R.J. Ballieu for I and IX, Dang Chau Phien for VI and IX, J.L. Corne for VII and VIII. The idea of writing this book originated in a seminar held at the University  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Material Type: Bibliographic data, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: N Rouche; P Habets; M Laloy
ISBN: 9781468493627 1468493620 9780387902586 0387902589
OCLC Number: 840289972
Description: 1 online resource (412 pages).
Contents: I. Elements of Stability Theory --
1. A First Glance at Stability Concepts --
2. Various Definitions of Stability and Attractivity --
3. Auxiliary Functions --
4. Stability and Partial Stability --
5. Instability --
6. Asymptotic Stability --
7. Converse Theorems --
8. Bibliographical Note --
II. Simple Topics in Stability Theory --
1. Theorems of E.A. Barbashin and N.N. Krasovski for Autonomous and Periodic Systems --
2. A Theorem of V.M. Matrosov on Asymptotic Stability --
3. Introduction to the Comparison Method --
4. Total Stability --
5. The Frequency Method for Stability of Control Systems --
6. Non-Differentiable Liapunov Functions --
7. Bibliographical Note --
III. Stability of a Mechanical Equilibrium --
1. Introduction --
2. The Lagrange-Dirichlet Theorem and Its Variants --
3. Inversion of the Lagrange-Dirichlet Theorem Using Auxiliary Functions --
4. Inversion of the Lagrange-Dirichlet Theorem Using the First Approximation --
5. Mechanical Equilibrium in the Presence of Dissipative Forces --
6. Mechanical Equilibrium in the Presence of Gyroscopic Forces --
7. Bibliographical Note --
IV. Stability in the Presence of First Integrals --
1. Introduction --
2. General Hypotheses --
3. How to Construct Liapunov Functions --
4. Eliminating Part of the Variables --
5. Stability of Stationary Motions --
6. Stability of a Betatron --
7. Construction of Positive Definite Functions --
8. Bibliographical Note --
V. Instability --
1. Introduction --
2. Definitions and General Hypotheses --
3. Fundamental Proposition --
4. Sectors --
5. Expellers --
6. Example of an Equation of N Order --
7. Instability of the Betatron --
8. Example of an Equation of Third Order --
9. Exercises --
10. Bibliographical Notes --
VI. A Survey of Qualitative Concepts --
1. Introduction --
2. A View of Stability and Attractivity Concepts --
3. Qualitative Concepts in General --
4. Equivalence Theorems for Qualitative Concepts --
5. A Tentative Classification of Concepts --
6. Weak Attractivity, Boundedness, Ultimate Boundedness --
7. Asymptotic Stability --
8. Bibliographical Note --
VII. Attractivity for Autonomous Equations --
1. Introduction --
2. General Hypotheses --
3. The Invariance Principle --
4. An Attractivity and a Weak Attractivity Theorem --
5. Attraction of a Particle by a Fixed Center --
6. A Class of Nonlinear Electrical Networks --
7. The Ecological Problem of Interacting Populations --
8. Bibliographical Note --
VIII. Attractivity for Non Autonomous Equations --
1. Introduction, General Hypotheses --
2. The Families of Auxiliary Functions --
3. Another Asymptotic Stability Theorem --
4. Extensions of the Invariance Principle and Related Questions --
5. The Invariance Principle for Asymptotically Autonomous and Related Equations --
6. Dissipative Periodic Systems --
7. Bibliographical Note --
IX. The Comparison Method --
1. Introduction --
2. Differential Inequalities --
3. A Vectorial Comparison Equation in Stability Theory --
4. Stability of Composite Systems --
5. An Example from Economics --
6. A General Comparison Principle --
7. Bibliographical Note --
Appendix I. DINI Derivatives and Monotonic Functions --
1. The Dini Derivatives --
2. Continuous Monotonic Functions --
3. The Derivative of a Monotonic Function --
4. Dini Derivative of a Function along the Solutions of a Differential Equation --
Appendix II. The Equations of Mechanical Systems --
Appendix III. Limit Sets --
List of Examples --
Author Index.
Series Title: Applied mathematical sciences (Springer-Verlag New York Inc.), 22.
Responsibility: by N. Rouche, P. Habets, M. Laloy.

Abstract:

This monograph is a collective work. The names appear ing on the front cover are those of the people who worked on every chapter. But the contributions of others were also very important: C. Risito for Chapters I, II and IV, K. Peiffer for III, IV, VI, IX R.J. Ballieu for I and IX, Dang Chau Phien for VI and IX, J.L. Corne for VII and VIII. The idea of writing this book originated in a seminar held at the University of Louvain during the academic year 1971-72. Two years later, a first draft was completed. However, it was unsatisfactory mainly because it was ex ce~sively abstract and lacked examples. It was then decided to write it again, taking advantage of -some remarks of the students to whom it had been partly addressed. The actual text is this second version. The subject matter is stability theory in the general setting of ordinary differential equations using what is known as Liapunov's direct or second method. We concentrate our efforts on this method, not because we underrate those which appear more powerful in some circumstances, but because it is important enough, along with its modern developments, to justify the writing of an up-to-date monograph. Also excellent books exist concerning the other methods, as for example R. Bellman [1953] and W.A. Coppel [1965].

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/840289972> # Stability Theory by Liapunov's Direct Method
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "840289972" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/6593390#Place/new_york_ny> ; # New York, NY
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    rdfs:comment "Unknown 'gen' value: bdt" ;
    schema:about <http://id.worldcat.org/fast/943472> ; # Global analysis (Mathematics)
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://dewey.info/class/515/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/6593390#Person/habets_p> ; # P. Habets
    schema:contributor <http://viaf.org/viaf/165956483> ; # M. Laloy
    schema:creator <http://experiment.worldcat.org/entity/work/data/6593390#Person/rouche_n> ; # N. Rouche
    schema:datePublished "1977" ;
    schema:description "I. Elements of Stability Theory -- 1. A First Glance at Stability Concepts -- 2. Various Definitions of Stability and Attractivity -- 3. Auxiliary Functions -- 4. Stability and Partial Stability -- 5. Instability -- 6. Asymptotic Stability -- 7. Converse Theorems -- 8. Bibliographical Note -- II. Simple Topics in Stability Theory -- 1. Theorems of E.A. Barbashin and N.N. Krasovski for Autonomous and Periodic Systems -- 2. A Theorem of V.M. Matrosov on Asymptotic Stability -- 3. Introduction to the Comparison Method -- 4. Total Stability -- 5. The Frequency Method for Stability of Control Systems -- 6. Non-Differentiable Liapunov Functions -- 7. Bibliographical Note -- III. Stability of a Mechanical Equilibrium -- 1. Introduction -- 2. The Lagrange-Dirichlet Theorem and Its Variants -- 3. Inversion of the Lagrange-Dirichlet Theorem Using Auxiliary Functions -- 4. Inversion of the Lagrange-Dirichlet Theorem Using the First Approximation -- 5. Mechanical Equilibrium in the Presence of Dissipative Forces -- 6. Mechanical Equilibrium in the Presence of Gyroscopic Forces -- 7. Bibliographical Note -- IV. Stability in the Presence of First Integrals -- 1. Introduction -- 2. General Hypotheses -- 3. How to Construct Liapunov Functions -- 4. Eliminating Part of the Variables -- 5. Stability of Stationary Motions -- 6. Stability of a Betatron -- 7. Construction of Positive Definite Functions -- 8. Bibliographical Note -- V. Instability -- 1. Introduction -- 2. Definitions and General Hypotheses -- 3. Fundamental Proposition -- 4. Sectors -- 5. Expellers -- 6. Example of an Equation of N Order -- 7. Instability of the Betatron -- 8. Example of an Equation of Third Order -- 9. Exercises -- 10. Bibliographical Notes -- VI. A Survey of Qualitative Concepts -- 1. Introduction -- 2. A View of Stability and Attractivity Concepts -- 3. Qualitative Concepts in General -- 4. Equivalence Theorems for Qualitative Concepts -- 5. A Tentative Classification of Concepts -- 6. Weak Attractivity, Boundedness, Ultimate Boundedness -- 7. Asymptotic Stability -- 8. Bibliographical Note -- VII. Attractivity for Autonomous Equations -- 1. Introduction -- 2. General Hypotheses -- 3. The Invariance Principle -- 4. An Attractivity and a Weak Attractivity Theorem -- 5. Attraction of a Particle by a Fixed Center -- 6. A Class of Nonlinear Electrical Networks -- 7. The Ecological Problem of Interacting Populations -- 8. Bibliographical Note -- VIII. Attractivity for Non Autonomous Equations -- 1. Introduction, General Hypotheses -- 2. The Families of Auxiliary Functions -- 3. Another Asymptotic Stability Theorem -- 4. Extensions of the Invariance Principle and Related Questions -- 5. The Invariance Principle for Asymptotically Autonomous and Related Equations -- 6. Dissipative Periodic Systems -- 7. Bibliographical Note -- IX. The Comparison Method -- 1. Introduction -- 2. Differential Inequalities -- 3. A Vectorial Comparison Equation in Stability Theory -- 4. Stability of Composite Systems -- 5. An Example from Economics -- 6. A General Comparison Principle -- 7. Bibliographical Note -- Appendix I. DINI Derivatives and Monotonic Functions -- 1. The Dini Derivatives -- 2. Continuous Monotonic Functions -- 3. The Derivative of a Monotonic Function -- 4. Dini Derivative of a Function along the Solutions of a Differential Equation -- Appendix II. The Equations of Mechanical Systems -- Appendix III. Limit Sets -- List of Examples -- Author Index."@en ;
    schema:description "This monograph is a collective work. The names appear ing on the front cover are those of the people who worked on every chapter. But the contributions of others were also very important: C. Risito for Chapters I, II and IV, K. Peiffer for III, IV, VI, IX R.J. Ballieu for I and IX, Dang Chau Phien for VI and IX, J.L. Corne for VII and VIII. The idea of writing this book originated in a seminar held at the University of Louvain during the academic year 1971-72. Two years later, a first draft was completed. However, it was unsatisfactory mainly because it was ex ce~sively abstract and lacked examples. It was then decided to write it again, taking advantage of -some remarks of the students to whom it had been partly addressed. The actual text is this second version. The subject matter is stability theory in the general setting of ordinary differential equations using what is known as Liapunov's direct or second method. We concentrate our efforts on this method, not because we underrate those which appear more powerful in some circumstances, but because it is important enough, along with its modern developments, to justify the writing of an up-to-date monograph. Also excellent books exist concerning the other methods, as for example R. Bellman [1953] and W.A. Coppel [1965]."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/6593390> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/6593390#Series/applied_mathematical_sciences_springer_verlag_new_york_inc> ; # Applied mathematical sciences (Springer-Verlag New York Inc.) ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/6593390#Series/applied_mathematical_sciences_0066_5452> ; # Applied Mathematical Sciences, 0066-5452 ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/6593390#CreativeWork/> ;
    schema:name "Stability Theory by Liapunov's Direct Method"@en ;
    schema:productID "840289972" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/840289972#PublicationEvent/new_york_ny_springer_new_york_1977> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/6593390#Agent/springer_new_york> ; # Springer New York
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3085247> ;
    schema:url <http://dx.doi.org/10.1007/978-1-4684-9362-7> ;
    schema:workExample <http://worldcat.org/isbn/9781468493627> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4684-9362-7> ;
    schema:workExample <http://worldcat.org/isbn/9780387902586> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/840289972> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/6593390#Agent/springer_new_york> # Springer New York
    a bgn:Agent ;
    schema:name "Springer New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/6593390#Person/habets_p> # P. Habets
    a schema:Person ;
    schema:familyName "Habets" ;
    schema:givenName "P." ;
    schema:name "P. Habets" ;
    .

<http://experiment.worldcat.org/entity/work/data/6593390#Person/rouche_n> # N. Rouche
    a schema:Person ;
    schema:familyName "Rouche" ;
    schema:givenName "N." ;
    schema:name "N. Rouche" ;
    .

<http://experiment.worldcat.org/entity/work/data/6593390#Place/new_york_ny> # New York, NY
    a schema:Place ;
    schema:name "New York, NY" ;
    .

<http://experiment.worldcat.org/entity/work/data/6593390#Series/applied_mathematical_sciences_0066_5452> # Applied Mathematical Sciences, 0066-5452 ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/840289972> ; # Stability Theory by Liapunov's Direct Method
    schema:name "Applied Mathematical Sciences, 0066-5452 ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/6593390#Series/applied_mathematical_sciences_springer_verlag_new_york_inc> # Applied mathematical sciences (Springer-Verlag New York Inc.) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/840289972> ; # Stability Theory by Liapunov's Direct Method
    schema:name "Applied mathematical sciences (Springer-Verlag New York Inc.) ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/943472> # Global analysis (Mathematics)
    a schema:Intangible ;
    schema:name "Global analysis (Mathematics)"@en ;
    .

<http://viaf.org/viaf/165956483> # M. Laloy
    a schema:Person ;
    schema:familyName "Laloy" ;
    schema:givenName "M." ;
    schema:name "M. Laloy" ;
    .

<http://worldcat.org/entity/work/data/6593390#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/840289972> ; # Stability Theory by Liapunov's Direct Method
    .

<http://worldcat.org/isbn/9780387902586>
    a schema:ProductModel ;
    schema:isbn "0387902589" ;
    schema:isbn "9780387902586" ;
    .

<http://worldcat.org/isbn/9781468493627>
    a schema:ProductModel ;
    schema:isbn "1468493620" ;
    schema:isbn "9781468493627" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.