skip to content
Stable non-Gaussian random processes : stochastic models with infinite variance Preview this item
ClosePreview this item
Checking...

Stable non-Gaussian random processes : stochastic models with infinite variance

Author: Gennady Samorodnitsky; Murad S Taqqu
Publisher: New York : Chapman and Hall, cop. 1994.
Series: Stochastic modeling
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:

This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Gennady Samorodnitsky; Murad S Taqqu
ISBN: 0412051710 9780412051715
OCLC Number: 468772099
Notes: Bibliogr. p. 603-619. Index. Tables.
Description: XVI-632 p. : ill. ; 25 cm.
Contents: Stable random variables on the real line; Multivariate stable distributions; Stable stochastic integrals; Dependence structures of multivariate stable distributions; Non-linear regression; Complex stable stochastic integrals and harmonizable processes; Self-similar processes; Chentsov random fields; Introduction to sample path properties; Boundedness, continuity and oscillations; Measurability, integrability and absolute continuity; Boundedness and continuity via metric entropy; Integral representation; Historical notes and extensions.
Series Title: Stochastic modeling
Responsibility: Gennady Samorodnitsky, Murad S. Taqqu.
More information:

Reviews

Editorial reviews

Publisher Synopsis

"There has been a pressing need for a book on this subject...The authors have succeeded in filling the gap...I am very glad a standard reference about stable processes now exists." - Bulletin of the Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/468772099> # Stable non-Gaussian random processes : stochastic models with infinite variance
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "468772099" ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/analyse_multivariee> ; # Analyse multivariée
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/modele_non_lineaire> ; # modèle non linéaire
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_stochastiques> ; # Processus stochastiques
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_stochastique> ; # processus stochastique
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/stabilite> ; # stabilité
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_gaussien> ; # processus gaussien
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/distribution> ; # distribution
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/gauss_loi_de_statistique> ; # Gauss, Loi de (Statistique)
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/regression> ; # régression
   schema:about <http://dewey.info/class/519.2/e22/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_gaussiens> ; # Processus gaussiens
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/arma> ; # ARMA
   schema:about <http://experiment.worldcat.org/entity/work/data/807011832#Topic/integrale_stochastique> ; # intégrale stochastique
   schema:author <http://viaf.org/viaf/32064472> ; # Murad S. Taqqu
   schema:author <http://experiment.worldcat.org/entity/work/data/807011832#Person/samorodnitsky_gennady> ; # Gennady Samorodnitsky
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "op." ;
   schema:datePublished "1994" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/807011832> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/807011832#Series/stochastic_modeling> ; # Stochastic modeling
   schema:name "Stable non-Gaussian random processes : stochastic models with infinite variance" ;
   schema:productID "468772099" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/468772099#PublicationEvent/new_york_chapman_and_hall_cop_1994> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/807011832#Agent/chapman_and_hall> ; # Chapman and Hall
   schema:workExample <http://worldcat.org/isbn/9780412051715> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/468772099> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Agent/chapman_and_hall> # Chapman and Hall
    a bgn:Agent ;
   schema:name "Chapman and Hall" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Person/samorodnitsky_gennady> # Gennady Samorodnitsky
    a schema:Person ;
   schema:familyName "Samorodnitsky" ;
   schema:givenName "Gennady" ;
   schema:name "Gennady Samorodnitsky" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Series/stochastic_modeling> # Stochastic modeling
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/468772099> ; # Stable non-Gaussian random processes : stochastic models with infinite variance
   schema:name "Stochastic modeling" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/analyse_multivariee> # Analyse multivariée
    a schema:Intangible ;
   schema:name "Analyse multivariée" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/gauss_loi_de_statistique> # Gauss, Loi de (Statistique)
    a schema:Intangible ;
   schema:name "Gauss, Loi de (Statistique)"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/integrale_stochastique> # intégrale stochastique
    a schema:Intangible ;
   schema:name "intégrale stochastique" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/modele_non_lineaire> # modèle non linéaire
    a schema:Intangible ;
   schema:name "modèle non linéaire" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_gaussiens> # Processus gaussiens
    a schema:Intangible ;
   schema:name "Processus gaussiens"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_stochastique> # processus stochastique
    a schema:Intangible ;
   schema:name "processus stochastique" ;
    .

<http://experiment.worldcat.org/entity/work/data/807011832#Topic/processus_stochastiques> # Processus stochastiques
    a schema:Intangible ;
   schema:name "Processus stochastiques" ;
    .

<http://viaf.org/viaf/32064472> # Murad S. Taqqu
    a schema:Person ;
   schema:familyName "Taqqu" ;
   schema:givenName "Murad S." ;
   schema:name "Murad S. Taqqu" ;
    .

<http://worldcat.org/isbn/9780412051715>
    a schema:ProductModel ;
   schema:isbn "0412051710" ;
   schema:isbn "9780412051715" ;
    .

<http://www.worldcat.org/title/-/oclc/468772099>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/468772099> ; # Stable non-Gaussian random processes : stochastic models with infinite variance
   schema:dateModified "2016-05-11" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.