doorgaan naar inhoud
Statistical learning theory and stochastic optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001 Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Statistical learning theory and stochastic optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001

Auteur: Olivier Catoni; Jean Picard; LINK (Online service)
Uitgever: Berlin : Springer-Verlag, ©2004.
Serie: Lecture notes in mathematics (Springer-Verlag), 1851.
Editie/Formaat:   eBoek : Document : Conferentie-uitgave : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Conference proceedings
Congresses
Aanvullende fysieke materiaalsoort: Print version:
Catoni, Olivier.
Statistical learning theory and stochastic optimization.
Berlin : Springer-Verlag, ©2004
(DLC) 2004109143
(OCoLC)56714791
Genre: Conferentie-uitgave, Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Olivier Catoni; Jean Picard; LINK (Online service)
ISBN: 9783540445074 3540445072
OCLC-nummer: 56508135
Opmerkingen: " ... 31st Probability Summer School in Saint-Flour (July 8-25, 2001) ..."--Preface.
Beschrijving: 1 online resource (viii, 272 pages) : illustrations.
Inhoud: Universal Lossless Data Compression --
Links Between Data Compression and Statistical Estimation --
Non Cumulated Mean Risk --
Gibbs Estimators --
Randomized Estimators and Empirical Complexity --
Deviation Inequalities --
Markov Chains with Exponential Transitions --
References --
Index.
Serietitel: Lecture notes in mathematics (Springer-Verlag), 1851.
Andere titels: Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
Verantwoordelijkheid: Olivier Catoni ; editor, Jean Picard.
Meer informatie:

Fragment:

e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

From the reviews: "This book is based on a course of lectures given by the author on a circle of ideas lying at the interface of information theory, statistical learning theory and statistical Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/56508135>
library:oclcnum"56508135"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/56508135>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1012127>
rdf:typeschema:Intangible
schema:name"Mathematical statistics"@en
schema:name"Mathematical statistics."@en
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2004"
schema:creator
schema:datePublished"2004"
schema:description"Universal Lossless Data Compression -- Links Between Data Compression and Statistical Estimation -- Non Cumulated Mean Risk -- Gibbs Estimators -- Randomized Estimators and Empirical Complexity -- Deviation Inequalities -- Markov Chains with Exponential Transitions -- References -- Index."@en
schema:description"Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/14473764>
schema:genre"Conference proceedings"@en
schema:genre"Conference proceedings."@en
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001"@en
schema:name"Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001"@en
schema:publisher
schema:url<http://dx.doi.org/10.1007/b99352>
schema:url<http://rave.ohiolink.edu/ebooks/ebc/11305972>
schema:url<http://www.springerlink.com/openurl.asp?genre=issue&issn=0075-8434&volume=1851>
schema:url
schema:url<http://springerlink.metapress.com/link.asp?id=MT30WFT73522>
schema:workExample

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.