跳至内容
Statistical learning theory and stochastic optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001 線上預覽
關閉線上預覽
正在查...

Statistical learning theory and stochastic optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001

作者: Olivier Catoni; Jean Picard; LINK (Online service)
出版商: Berlin : Springer-Verlag, ©2004.
叢書: Lecture notes in mathematics (Springer-Verlag), 1851.
版本/格式:   電子書 : 文獻 : 會議刊物 : 英語所有版本和格式的總覽
資料庫:WorldCat
提要:
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

主題
更多類似這樣的

 

在線上查詢

與資料的連結

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

類型/形式: Electronic books
Conference papers and proceedings
Congresses
其他的實體格式: Print version:
Catoni, Olivier.
Statistical learning theory and stochastic optimization.
Berlin : Springer-Verlag, ©2004
(DLC) 2004109143
(OCoLC)56714791
資料類型: 會議刊物, 文獻, 網際網路資源
文件類型: 網路資源, 電腦資料
所有的作者/貢獻者: Olivier Catoni; Jean Picard; LINK (Online service)
ISBN: 9783540445074 3540445072
OCLC系統控制編碼: 56508135
注意: " ... 31st Probability Summer School in Saint-Flour (July 8-25, 2001) ..."--Preface.
描述: 1 online resource (viii, 272 pages) : illustrations.
内容: Universal Lossless Data Compression --
Links Between Data Compression and Statistical Estimation --
Non Cumulated Mean Risk --
Gibbs Estimators --
Randomized Estimators and Empirical Complexity --
Deviation Inequalities --
Markov Chains with Exponential Transitions --
References --
Index.
叢書名: Lecture notes in mathematics (Springer-Verlag), 1851.
其他題名: Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
責任: Olivier Catoni ; editor, Jean Picard.

摘要:

e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the  再讀一些...

評論

社評

出版商概要

From the reviews: "This book is based on a course of lectures given by the author on a circle of ideas lying at the interface of information theory, statistical learning theory and statistical 再讀一些...

 
讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個
確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


Primary Entity

<http://www.worldcat.org/oclc/56508135> # Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "56508135" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/14473764#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/510/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/14473764#Topic/mathematical_statistics> ; # Mathematical statistics
    schema:about <http://id.worldcat.org/fast/1077737> ; # Probabilities
    schema:about <http://id.worldcat.org/fast/1012127> ; # Mathematical statistics
    schema:about <http://experiment.worldcat.org/entity/work/data/14473764#Topic/statistics> ; # Statistics
    schema:about <http://experiment.worldcat.org/entity/work/data/14473764#Topic/probabilities> ; # Probabilities
    schema:about <http://id.worldcat.org/fast/1132103> ; # Statistics
    schema:alternateName "Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001" ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/22164105> ; # Jean Picard
    schema:contributor <http://viaf.org/viaf/263941687> ; # LINK (Online service)
    schema:contributor <http://experiment.worldcat.org/entity/work/data/14473764#Meeting/ecole_d_ete_de_probabilites_de_saint_flour_31st_2001> ; # Ecole d'été de probabilités de Saint-Flour (31st : 2001)
    schema:copyrightYear "2004" ;
    schema:creator <http://viaf.org/viaf/27313552> ; # Olivier Catoni
    schema:datePublished "2004" ;
    schema:description "Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results."@en ;
    schema:description "Universal Lossless Data Compression -- Links Between Data Compression and Statistical Estimation -- Non Cumulated Mean Risk -- Gibbs Estimators -- Randomized Estimators and Empirical Complexity -- Deviation Inequalities -- Markov Chains with Exponential Transitions -- References -- Index."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/14473764> ;
    schema:genre "Electronic books"@en ;
    schema:genre "Conference publication"@en ;
    schema:genre "Conference papers and proceedings"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/14473764#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:isPartOf <http://worldcat.org/issn/0075-8434> ; # Lecture notes in mathematics,
    schema:isSimilarTo <http://www.worldcat.org/oclc/56714791> ;
    schema:name "Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001"@en ;
    schema:productID "56508135" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/56508135#PublicationEvent/berlin_springer_verlag_2004> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/14473764#Agent/springer_verlag> ; # Springer-Verlag
    schema:url <http://springerlink.metapress.com/link.asp?id=MT30WFT73522> ;
    schema:url <http://www.springerlink.com/openurl.asp?genre=issue&issn=0075-8434&volume=1851> ;
    schema:url <http://rave.ohiolink.edu/ebooks/ebc/11305972> ;
    schema:url <http://dx.doi.org/10.1007/b99352> ;
    schema:workExample <http://worldcat.org/isbn/9783540445074> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/56508135> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/14473764#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
    schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/14473764#Meeting/ecole_d_ete_de_probabilites_de_saint_flour_31st_2001> # Ecole d'été de probabilités de Saint-Flour (31st : 2001)
    a bgn:Meeting, schema:Event ;
    schema:name "Ecole d'été de probabilités de Saint-Flour (31st : 2001)" ;
    .

<http://experiment.worldcat.org/entity/work/data/14473764#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/56508135> ; # Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1012127> # Mathematical statistics
    a schema:Intangible ;
    schema:name "Mathematical statistics"@en ;
    .

<http://id.worldcat.org/fast/1077737> # Probabilities
    a schema:Intangible ;
    schema:name "Probabilities"@en ;
    .

<http://id.worldcat.org/fast/1132103> # Statistics
    a schema:Intangible ;
    schema:name "Statistics"@en ;
    .

<http://viaf.org/viaf/22164105> # Jean Picard
    a schema:Person ;
    schema:familyName "Picard" ;
    schema:givenName "Jean" ;
    schema:name "Jean Picard" ;
    .

<http://viaf.org/viaf/263941687> # LINK (Online service)
    a schema:Organization ;
    schema:name "LINK (Online service)" ;
    .

<http://viaf.org/viaf/27313552> # Olivier Catoni
    a schema:Person ;
    schema:familyName "Catoni" ;
    schema:givenName "Olivier" ;
    schema:name "Olivier Catoni" ;
    .

<http://worldcat.org/isbn/9783540445074>
    a schema:ProductModel ;
    schema:isbn "3540445072" ;
    schema:isbn "9783540445074" ;
    .

<http://worldcat.org/issn/0075-8434> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/56508135> ; # Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
    schema:issn "0075-8434" ;
    schema:name "Lecture notes in mathematics," ;
    .

<http://www.worldcat.org/oclc/56714791>
    a schema:CreativeWork ;
    rdfs:label "Statistical learning theory and stochastic optimization." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/56508135> ; # Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
    .

<http://www.worldcat.org/title/-/oclc/56508135>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/56508135> ; # Statistical learning theory and stochastic optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI-2001
    schema:dateModified "2015-08-02" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.