skip to content
Straightforward statistics : understanding the tools of research Preview this item
ClosePreview this item
Checking...

Straightforward statistics : understanding the tools of research

Author: Glenn Geher; Sara Hall
Publisher: New York : Oxford University Press, [2016] ©2014
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

Straightforward Statistics: Understanding the Tools of Research is a clear and direct introduction to statistics for the social, behavioral, and life sciences.

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Glenn Geher; Sara Hall
ISBN: 9780190276959 0190276959
OCLC Number: 929824727
Notes: Originally published: 2014.
"Oxford University Press paperback"--Title page verso.
Description: xvi, 395 pages : illustrations ; 26 cm
Contents: 1. Prelude : why do I need to learn statistics? --
Nature of findings and facts in the Behavioral Sciences --
Statistical significance and effect size --
Descriptive and inferential statistics --
A conceptual approach to teaching and learning statistics --
The nature of this book --
How to approach this class and what you should get out of it --
Key terms --
2. Describing a single variable --
Variables, values, and scores --
Types of variables --
Describing scores for a single variable --
Indices of central tendency --
Indices of variability (and the sheer beauty of standard deviation!) --
Rounding --
Describing frequencies of values for a single variable --
Representing frequency data graphically --
Describing data for a categorical variable --
a real research example --
Summary --
Key terms --
3. Standardized scores --
When a Z-score equals 0, the raw score it corresponds to must equal the mean --
Verbal scores for the Madupistan Aptitude Measure --
Quantative scores for the Madupistan Aptitude Measure --
Every raw score for any variable corresponds to a particular Z-score --
Computing Z-scores for all students for the Madupistan Verbal test --
Computing raw scores from z-scores --
Comparing your GPA of 3.10 from Solid State University with Pat's GPA of 1.95 from Advanced Technical University --
Each z-score for any variable corresponds to a particular raw score --
Converting z-scores to raw scores (the dorm resident example) --
A real research example --
Summary --
Key terms --
4. Correlation --
Correlations are summaries --
Representing a correlation graphically --
Representing a correlation mathematically --
Return to Madupistan --
Correlation does not imply causation --
A real research example --
Summary --
Key terms --
5. Statistical prediction and regression --
Standardized regression --
Predicting scores on Y with different amounts of information --
Beta weight --
Unstandardized regression equation --
The regression line --
Quantitatively estimating the predictive power of your regression model Interpreting r² --
A real reasearch example --
Conclusion --
Key terms --
6. The basic elements of hypothesis testing --
The basic elements of inferential statistics --
The normal distribution --
A real research example --
Summary --
Key terms --
7. Introduction to hypothesis testing --
The basic rationale of hypothesis testing --
Understanding the broader population of interest --
Population versus sample parameters --
The five basic steps of hypothesis testing --
A real research example --
Summary --
Key terms --
8. Hypothesis testing in N>1 --
The distribution of means --
Steps in hypothesis testing if N>1 --
Confidence intervals --
A real research example --
Summary --
Key terms 9. Statistical power --
What is statistical power? --
An example of statistical power --
Factors that affect statistical power --
A real research example --
Summary --
Key terms --
10. t-tests (one-sample and within-groups) --
One-sample t-test --
Steps for hypothesis testing with a one-sample t-test --
Here are some simple rules to determine the sign of t with a one-sample t-test --
Computing effect size with a one-sample t-test --
how the t-test is biased against small samples --
The within-group t-test --
Steps in computing the within-group t-test --
Computing effect size with a within-group t-test --
A real research example --
Summary --
Key terms --
11. The between-groups t-test --
Elements of the between-groups t-test --
Effect size with the betwee-groups t-test --
Another example --
Real research example --
Summary --
Key terms --
12. Analysis of variance --
ANOVA as a signal-detection statistic --
An example of the one-way ANOVA --
What can and cannot be inferred from ANOVA (The importance of follow-up tests) --
Estimating effect size with the one-way ANOVA --
Real research example --
Summary --
Key terms --
13. Chi square and hypothesis-testing with categorical variables --
Chi square test of goodness of fit --
Steps in hypothesis testing with chi square goodness of fit --
What can and cannot be inferred from a significant chi square --
Chi square goodness of fit testing for equality across categories --
Chi square test of independence --
Real research example --
Summary --
Key terms --
Appendix A. Cumulative standardized normal distribution --
Appendix B. t distribution : critical values of t --
Appendix C. F distribution : critical values of F --
Appendix D. Chi square distribution: critical values of x² --
Appendix E. Advanced statistics to be aware of (Advance forms of ANOVA) --
Appendix F. Using SPSS --
SPSS data entry lab --
Syntax files, recoding variables, compute statements, out files, and the computation of variables in SPSS --
How to recode items for the Jealousy data and compute composite variables --
Descriptive statistics --
Frequencies , descriptives and histograms --
The continuous variable --
The categorical variable --
Correlations --
Regression --
t-tests --
ANOVA with SPSS --
Post Hoc tests --
Homogeneous subsets --
Factorial ANOVA --
Chi square --
Crosstabs --
Glossary.
Responsibility: Glenn Geher and Sara Hall.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/929824727> # Straightforward statistics : understanding the tools of research
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "929824727" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1782756870#Topic/statistics_study_and_teaching_higher> ; # Statistics--Study and teaching (Higher)
   schema:about <http://experiment.worldcat.org/entity/work/data/1782756870#Topic/psychology_research> ; # Psychology--Research
   schema:about <http://experiment.worldcat.org/entity/work/data/1782756870#Topic/psychometrics> ; # Psychometrics
   schema:about <http://dewey.info/class/150.15195/e23/> ;
   schema:about <http://id.loc.gov/authorities/classification/BF39> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1782756870#Topic/psychology_mathematical_models> ; # Psychology--Mathematical models
   schema:author <http://experiment.worldcat.org/entity/work/data/1782756870#Person/hall_sara_1979> ; # Sara Hall
   schema:author <http://experiment.worldcat.org/entity/work/data/1782756870#Person/geher_glenn> ; # Glenn Geher
   schema:bookFormat bgn:PrintBook ;
   schema:datePublished "2016" ;
   schema:description "9. Statistical power -- What is statistical power? -- An example of statistical power -- Factors that affect statistical power -- A real research example -- Summary -- Key terms -- 10. t-tests (one-sample and within-groups) -- One-sample t-test -- Steps for hypothesis testing with a one-sample t-test -- Here are some simple rules to determine the sign of t with a one-sample t-test -- Computing effect size with a one-sample t-test -- how the t-test is biased against small samples -- The within-group t-test -- Steps in computing the within-group t-test -- Computing effect size with a within-group t-test -- A real research example -- Summary -- Key terms -- 11. The between-groups t-test -- Elements of the between-groups t-test -- Effect size with the betwee-groups t-test -- Another example -- Real research example -- Summary -- Key terms -- 12. Analysis of variance -- ANOVA as a signal-detection statistic -- An example of the one-way ANOVA -- What can and cannot be inferred from ANOVA (The importance of follow-up tests) -- Estimating effect size with the one-way ANOVA -- Real research example -- Summary -- Key terms -- 13. Chi square and hypothesis-testing with categorical variables -- Chi square test of goodness of fit -- Steps in hypothesis testing with chi square goodness of fit -- What can and cannot be inferred from a significant chi square -- Chi square goodness of fit testing for equality across categories -- Chi square test of independence -- Real research example -- Summary -- Key terms -- Appendix A. Cumulative standardized normal distribution -- Appendix B. t distribution : critical values of t -- Appendix C. F distribution : critical values of F -- Appendix D. Chi square distribution: critical values of x² -- Appendix E. Advanced statistics to be aware of (Advance forms of ANOVA) -- Appendix F. Using SPSS -- SPSS data entry lab -- Syntax files, recoding variables, compute statements, out files, and the computation of variables in SPSS -- How to recode items for the Jealousy data and compute composite variables -- Descriptive statistics -- Frequencies , descriptives and histograms -- The continuous variable -- The categorical variable -- Correlations -- Regression -- t-tests -- ANOVA with SPSS -- Post Hoc tests -- Homogeneous subsets -- Factorial ANOVA -- Chi square -- Crosstabs -- Glossary."@en ;
   schema:description "1. Prelude : why do I need to learn statistics? -- Nature of findings and facts in the Behavioral Sciences -- Statistical significance and effect size -- Descriptive and inferential statistics -- A conceptual approach to teaching and learning statistics -- The nature of this book -- How to approach this class and what you should get out of it -- Key terms -- 2. Describing a single variable -- Variables, values, and scores -- Types of variables -- Describing scores for a single variable -- Indices of central tendency -- Indices of variability (and the sheer beauty of standard deviation!) -- Rounding -- Describing frequencies of values for a single variable -- Representing frequency data graphically -- Describing data for a categorical variable -- a real research example -- Summary -- Key terms -- 3. Standardized scores -- When a Z-score equals 0, the raw score it corresponds to must equal the mean -- Verbal scores for the Madupistan Aptitude Measure -- Quantative scores for the Madupistan Aptitude Measure -- Every raw score for any variable corresponds to a particular Z-score -- Computing Z-scores for all students for the Madupistan Verbal test -- Computing raw scores from z-scores -- Comparing your GPA of 3.10 from Solid State University with Pat's GPA of 1.95 from Advanced Technical University -- Each z-score for any variable corresponds to a particular raw score -- Converting z-scores to raw scores (the dorm resident example) -- A real research example -- Summary -- Key terms -- 4. Correlation -- Correlations are summaries -- Representing a correlation graphically -- Representing a correlation mathematically -- Return to Madupistan -- Correlation does not imply causation -- A real research example -- Summary -- Key terms -- 5. Statistical prediction and regression -- Standardized regression -- Predicting scores on Y with different amounts of information -- Beta weight -- Unstandardized regression equation -- The regression line -- Quantitatively estimating the predictive power of your regression model Interpreting r² -- A real reasearch example -- Conclusion -- Key terms -- 6. The basic elements of hypothesis testing -- The basic elements of inferential statistics -- The normal distribution -- A real research example -- Summary -- Key terms -- 7. Introduction to hypothesis testing -- The basic rationale of hypothesis testing -- Understanding the broader population of interest -- Population versus sample parameters -- The five basic steps of hypothesis testing -- A real research example -- Summary -- Key terms -- 8. Hypothesis testing in N>1 -- The distribution of means -- Steps in hypothesis testing if N>1 -- Confidence intervals -- A real research example -- Summary -- Key terms"@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1782756870> ;
   schema:inLanguage "en" ;
   schema:name "Straightforward statistics : understanding the tools of research"@en ;
   schema:productID "929824727" ;
   schema:workExample <http://worldcat.org/isbn/9780190276959> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB5F4463> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/929824727> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1782756870#Person/geher_glenn> # Glenn Geher
    a schema:Person ;
   schema:familyName "Geher" ;
   schema:givenName "Glenn" ;
   schema:name "Glenn Geher" ;
    .

<http://experiment.worldcat.org/entity/work/data/1782756870#Topic/psychology_mathematical_models> # Psychology--Mathematical models
    a schema:Intangible ;
   schema:name "Psychology--Mathematical models"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1782756870#Topic/psychology_research> # Psychology--Research
    a schema:Intangible ;
   schema:name "Psychology--Research"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1782756870#Topic/statistics_study_and_teaching_higher> # Statistics--Study and teaching (Higher)
    a schema:Intangible ;
   schema:name "Statistics--Study and teaching (Higher)"@en ;
    .

<http://worldcat.org/isbn/9780190276959>
    a schema:ProductModel ;
   schema:isbn "0190276959" ;
   schema:isbn "9780190276959" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.