zum Inhalt wechseln
String topology and the based loop space Titelvorschau
SchließenTitelvorschau
Prüfung…

String topology and the based loop space

Verfasser/in: Eric James MalmRalph L CohenG CarlssonSøren GalatiusSteve KerckhoffAlle Autoren
Verlag: 2010.
Dissertation: Thesis (Ph. D.)--Stanford University, 2010.
Ausgabe/Format   Diplomarbeit/Dissertation : Dokument : Diplomarbeit/Dissertation : E-Book   Computer-Datei : Englisch
Datenbank:WorldCat
Zusammenfassung:
We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Medientyp: Dokument, Diplomarbeit/Dissertation, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Eric James Malm; Ralph L Cohen; G Carlsson; Søren Galatius; Steve Kerckhoff; Stanford University. Department of Mathematics.
OCLC-Nummer: 665049539
Anmerkungen: Submitted to the Department of Mathematics.
Beschreibung: 1 online resource.
Verfasserangabe: Eric James Malm.

Abstract:

We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/665049539>
library:oclcnum"665049539"
owl:sameAs<info:oclcnum/665049539>
rdf:typej.1:Thesis
rdf:typeschema:Book
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/659491274>
schema:inLanguage"en"
schema:name"String topology and the based loop space"@en
schema:url<http://purl.stanford.edu/vs885hy7344>
schema:url

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.