passa ai contenuti
String topology and the based loop space Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

String topology and the based loop space

Autore: Eric James MalmRalph L CohenG CarlssonSøren GalatiusSteve KerckhoffTutti gli autori
Editore: 2010.
Tesi: Thesis (Ph. D.)--Stanford University, 2010.
Edizione/Formato:   Tesi/dissertazione : Document : Thesis/dissertation : eBook   Computer File : English
Banca dati:WorldCat
Sommario:
We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Thesis/dissertation, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: Eric James Malm; Ralph L Cohen; G Carlsson; Søren Galatius; Steve Kerckhoff; Stanford University. Department of Mathematics.
Numero OCLC: 665049539
Note: Submitted to the Department of Mathematics.
Descrizione: 1 online resource.
Responsabilità: Eric James Malm.

Abstract:

We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/665049539>
library:oclcnum"665049539"
owl:sameAs<info:oclcnum/665049539>
rdf:typej.1:Thesis
rdf:typeschema:Book
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/659491274>
schema:inLanguage"en"
schema:name"String topology and the based loop space"@en
schema:url<http://purl.stanford.edu/vs885hy7344>
schema:url

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.