doorgaan naar inhoud
String topology and the based loop space Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

String topology and the based loop space

Auteur: Eric James MalmRalph L CohenG CarlssonSøren GalatiusSteve KerckhoffAlle auteurs
Uitgever: 2010.
Proefschrift: Ph. D. Stanford University 2010
Editie/Formaat:   Scriptie/Proefschrift : Document : Scriptie/Dissertatie : e-Boek   Computerbestand : Engels
Database:WorldCat
Samenvatting:
We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Document, Scriptie/Dissertatie, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Eric James Malm; Ralph L Cohen; G Carlsson; Søren Galatius; Steve Kerckhoff; Stanford University. Department of Mathematics.
OCLC-nummer: 665049539
Opmerkingen: Submitted to the Department of Mathematics.
Beschrijving: 1 online resource
Verantwoordelijkheid: Eric James Malm.

Fragment:

We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


Primary Entity

<http://www.worldcat.org/oclc/665049539> # String topology and the based loop space
    a schema:CreativeWork, schema:Book, bgn:Thesis, schema:MediaObject, pto:Web_document ;
    bgn:inSupportOf "" ;
    library:oclcnum "665049539" ;
    schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
    schema:contributor <http://viaf.org/viaf/41462215> ; # Steve Kerckhoff
    schema:contributor <http://viaf.org/viaf/164830929> ; # Søren Galatius
    schema:contributor <http://viaf.org/viaf/40494696> ; # Ralph L. Cohen
    schema:contributor <http://experiment.worldcat.org/entity/work/data/659491274#Person/carlsson_g_gunnar_1952> ; # Gunnar Carlsson
    schema:creator <http://experiment.worldcat.org/entity/work/data/659491274#Person/malm_eric_james> ; # Eric James Malm
    schema:datePublished "2010" ;
    schema:description "We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/659491274> ;
    schema:inLanguage "en" ;
    schema:name "String topology and the based loop space"@en ;
    schema:productID "665049539" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/665049539#PublicationEvent/2010> ;
    schema:url <http://purl.stanford.edu/vs885hy7344> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/665049539> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/659491274#Person/carlsson_g_gunnar_1952> # Gunnar Carlsson
    a schema:Person ;
    schema:birthDate "1952" ;
    schema:familyName "Carlsson" ;
    schema:givenName "Gunnar" ;
    schema:givenName "G." ;
    schema:name "Gunnar Carlsson" ;
    .

<http://experiment.worldcat.org/entity/work/data/659491274#Person/malm_eric_james> # Eric James Malm
    a schema:Person ;
    schema:familyName "Malm" ;
    schema:givenName "Eric James" ;
    schema:name "Eric James Malm" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
    schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/164830929> # Søren Galatius
    a schema:Person ;
    schema:birthDate "1976" ;
    schema:familyName "Galatius" ;
    schema:givenName "Søren" ;
    schema:name "Søren Galatius" ;
    .

<http://viaf.org/viaf/40494696> # Ralph L. Cohen
    a schema:Person ;
    schema:birthDate "1952" ;
    schema:familyName "Cohen" ;
    schema:givenName "Ralph L." ;
    schema:name "Ralph L. Cohen" ;
    .

<http://viaf.org/viaf/41462215> # Steve Kerckhoff
    a schema:Person ;
    schema:familyName "Kerckhoff" ;
    schema:givenName "Steve" ;
    schema:name "Steve Kerckhoff" ;
    .


Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.