pular para conteúdo
String topology and the based loop space Ver prévia deste item
FecharVer prévia deste item
Checando...

String topology and the based loop space

Autor: Eric James MalmRalph L CohenG CarlssonSøren GalatiusSteve KerckhoffTodos os autores
Editora: 2010.
Dissertação: Thesis (Ph. D.)--Stanford University, 2010.
Edição/Formato   Tese/dissertação : Documento : Tese/dissertação : e-book   Arquivo de Computador : Inglês
Base de Dados:WorldCat
Resumo:
We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Documento, Tese/dissertação, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Eric James Malm; Ralph L Cohen; G Carlsson; Søren Galatius; Steve Kerckhoff; Stanford University. Department of Mathematics.
Número OCLC: 665049539
Notas: Submitted to the Department of Mathematics.
Descrição: 1 online resource.
Responsabilidade: Eric James Malm.

Resumo:

We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/665049539>
library:oclcnum"665049539"
owl:sameAs<info:oclcnum/665049539>
rdf:typej.1:Thesis
rdf:typeschema:Book
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"We relate the Batalin-Vilkovisky (BV) algebra structure of the string topology of a manifold to the homological algebra of the singular chains of the based loop space of that manifold, showing that its Hochschild cohomology carries a BV algebra structure isomorphic to that of string topology. Furthermore, this structure is compatible with the usual cup product and Lie bracket on Hochschild cohomology. This isomorphism arises from a derived form of Poincare duality using modules over the based loop space as local coefficient systems. This derived Poincare duality also comes from a form of fibrewise Atiyah duality on the level of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the Chas-Sullivan loop product."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/659491274>
schema:inLanguage"en"
schema:name"String topology and the based loop space"@en
schema:url<http://purl.stanford.edu/vs885hy7344>
schema:url

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.