skip to content
Structural analysis and design of tall buildings : steel and composite construction Preview this item
ClosePreview this item
Checking...

Structural analysis and design of tall buildings : steel and composite construction

Author: Bungale S Taranath
Publisher: Boca Raton : CRC/Taylor & Francis, ©2012.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:

An easy-to-follow guide to theoretical, practical, and computational aspects of wind and earthquake engineering, this book addresses various aspects of wind and earthquake engineering, code  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Bungale S Taranath
ISBN: 9781439850893 1439850895
OCLC Number: 777260020
Description: liii, 635 p. : ill. (some col.), plates ; 27 cm.
Contents: Machine generated contents note: Preview --
1.1.Rigid Frames --
1.1.1.Frames with Partially Rigid Connections --
1.1.2.Review of Connection Behavior --
1.1.2.1.Connection Classification --
1.1.2.2.Connection Strength --
1.1.2.3.Connection Ductility --
1.1.2.4.Structural Analysis and Design --
1.1.3.Beam Line Concept --
1.2.Frames with Fully Restrained Connections --
1.2.1.Special Moment Frame, Historic Perspective --
1.2.1.1.Deflection Characteristics --
1.2.2.Cantilever Bending Component --
1.2.3.Shear Racking Component --
1.2.4.Methods of Analysis --
1.2.5.Drift Calculations --
1.2.6.Truss Moment Frames --
1.3.Concentric Braced Frames --
1.3.1.Behavior --
1.3.2.Types of Concentric Braces --
1.4.Eccentric Braced Frames --
1.4.1.Behavior --
1.4.2.Deflection Characteristics --
1.4.3.Seismic Design Considerations --
1.4.3.1.Link Beam Design --
1.4.3.2.Link-to-Column Connections --
1.4.3.3.Diagonal Brace and Beam outside of Links --
1.4.3.4.Link Stiffness --
1.4.3.5.Columns --
1.4.3.6.Schematic Details --
1.5.Buckling-Restrained Brace Frame --
1.6.Steel Plate Shear Wall --
1.6.1.Low-Seismic Design --
1.6.2.High-Seismic Design --
1.6.2.1.Behavior --
1.6.2.2.AISC 341-05 Requirements for Special Plate Shear Walls --
1.6.2.3.Modeling for Analysis --
1.6.2.4.Capacity Design Methods --
1.7.Staggered Truss --
1.7.1.Behavior --
1.7.2.Design Considerations --
1.7.2.1.Floor Systems --
1.7.2.2.Columns --
1.7.2.3.Trusses --
1.7.3.Seismic Design of Staggered Truss System --
1.7.3.1.Response of Staggered Truss System to Seismic Loads --
1.8.Interacting System of Braced and Rigid Frames --
1.8.1.Behavior --
1.9.Core and Outrigger Systems --
1.9.1.Behavior --
1.9.1.1.Outrigger Located at Top --
1.9.1.2.Outrigger Located at Three-Quarter Height from Bottom --
1.9.1.3.Outrigger at Mid-Height --
1.9.1.4.Outriggers at Quarter-Height from Bottom --
1.9.2.Optimum Location of a Single Outrigger --
1.9.2.1.Analysis Outline --
1.9.2.2.Detail Analysis --
1.9.2.3.Computer Analysis --
1.9.2.4.Conclusions --
1.9.3.Optimum Locations of Two Outriggers --
1.9.3.1.Recommendations for Optimum Locations --
1.9.4.Vulnerability of Core and Outrigger System to Progressive Collapse --
1.9.5.Offset Outriggers --
1.9.6.Example Projects --
1.10.Frame Tube Systems --
1.10.1.Behavior --
1.10.2.Shear Lag --
1.11.Irregular Tube --
1.12.Trussed Tube --
1.13.Bundled lithe --
1.13.1.Behavior --
1.14.Ultimate High-Efficiency Systems for Ultra Tall Buildings --
Preview --
2.1.Composite Members --
2.1.1.Composite Slabs --
2.1.2.Composite Girders --
2.1.3.Composite Columns --
2.1.4.Composite Diagonals --
2.1.5.Composite Shear Walls --
2.2.Composite Subsystems --
2.2.1.Composite Moment Frames --
2.2.1.1.Ordinary Moment Frames --
2.2.1.2.Special Moment Frames --
2.2.2.Composite Braced Frames --
2.2.3.Composite Eccentrically Braced Frames --
2.2.4.Composite Construction --
2.2.5.Temporary Bracing --
2.3.Composite Building Systems --
2.3.1.Reinforced Concrete Core with Steel Surround --
2.3.2.Shear Wall-Frame Interacting Systems --
2.3.3.Composite Tube Systems --
2.3.4.Vertically Mixed Systems --
2.3.5.Mega Frames with Super Columns --
2.3.6.High-Efficiency Structure: Structural Concept --
2.4.Seismic Design of Composite Buildings --
Preview --
3.1.General Considerations --
3.1.1.Steel and Cast Iron: Historical Perspective --
3.1.1.1.Chronology of Steel Buildings --
3.1.1.2.1920 through 1950 --
3.1.1.3.1950 through 1970 --
3.1.1.4.1970 to Present --
3.1.2.Gravity Loads --
3.1.3.Design Load Combinations --
3.1.4.Required Strength --
3.1.5.Limit States --
3.1.6.Design for Strength Using Load and Resistance Factor Design --
3.1.7.Serviceability Concerns --
3.1.8.Deflections --
3.2.Design of Members Subject to Compression --
3.2.1.Buckling of Columns, Fundamentals --
3.2.1.1.Euler's Formula --
3.2.1.2.Energy Method of Calculating Critical Loads --
3.2.2.Behavior of Compression Members --
3.2.2.1.Element Instability --
3.2.3.Limits on Slenderness Ratio, KL/r --
3.2.4.Column Curves: Compressive Strength of Members without Slender Elements --
3.2.5.Columns with Slender Unstiffened Elements: Yield Stress Reduction Factor, Q --
3.2.6.Design Examples: Compression Members --
3.2.6.1.Wide Flange Column, Design Example --
3.2.6.2.HSS Column, Design Example --
3.3.Design of Members Subject to Bending --
3.3.1.Compact, Noncompact, and Slender Sections --
3.3.2.Flexural Design of Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis --
3.3.3.Design Examples, Members Subject to Bending and Shear --
3.3.3.1.General Comments --
3.3.3.2.Simple-Span Beam, Braced Top Flange --
3.3.3.3.Simple-Span Beam, Unbraced Top Flange --
3.4.Tension Members --
3.4.1.Design Examples --
3.4.1.1.Plate in Tension, Bolted Connection --
3.4.1.2.Plate in Tension, Welded Connection --
3.4.1.3.Double-Angle Hanger --
3.4.1.4.Bottom Chord of a Long-Span Truss --
3.4.1.5.Pin-Connected Tension Member --
3.4.1.6.Eyebar Tension Member --
3.5.Design for Shear, Additional Comments --
3.5.1.Transverse Stiffeners --
3.5.2.Tension Field Action --
3.6.Design of Members for Combined Forces and Torsion (in Other Words, Members Subjected to Torture) --
3.7.Design for Stability --
3.7.1.Behavior of Beam Columns --
3.7.2.Buckling of Columns --
3.7.3.Second-Order Effects --
3.7.4.Deformation of the Structure --
3.7.5.Residual Stresses --
3.7.6.Notional Load --
3.7.7.Geometric Imperfections --
3.7.8.Leaning Columns --
3.8.AISC 360-10 Stability Provisions --
3.8.1.Second-Order Analysis --
3.8.2.Reduced Stiffness in the Analysis --
3.8.3.Application of Notional Loads --
3.8.4.Member Strength Checks --
3.8.5.Step-by-Step Procedure for Direct Analysis Method --
3.9.Understanding How Commercial Software Works --
Preview --
4.1.Composite Metal Deck --
4.1.1.SDI Specifications --
4.2.Composite Beams --
4.2.1.AISC Design Criteria: Composite Beams with Metal Deck and Concrete Topping --
4.2.1.1.AISC Requirements, General Comments --
4.2.1.2.Effective Width --
4.2.1.3.Positive Flexural Strength --
4.2.1.4.Negative Flexural Strength --
4.2.1.5.Shear Connectors --
4.2.1.6.Deflection Considerations --
4.2.1.7.Design Outline for Composite Beam --
4.3.Composite Joists and Trusses --
4.3.1.Composite Joists --
4.3.2.Composite Trusses --
4.4.Other Types of Composite Floor Construction --
4.5.Continuous Composite Beams --
4.6.Nonprismatic Composite Beams and Girders --
4.7.Moment-Connected Composite Haunch Girders --
4.8.Composite Stub Girders --
4.8.1.Behavior and Analysis --
4.8.2.Stub Girder Design Example --
4.8.3.Moment-Connected Stub Girder --
4.8.4.Strengthening of Stub Girder --
4.9.Composite Columns --
4.9.1.Behavior --
4.9.2.AISC Design Criteria, Encased Composite Columns --
4.9.2.1.Limitations --
4.9.2.2.Compressive Strength --
4.9.2.3.Tensile Strength --
4.9.2.4.Shear Strength --
4.9.2.5.Load Transfer --
4.9.2.6.Detailing Requirements --
4.9.2.7.Strength of Stud Shear Connectors --
4.9.3.AISC Design Criteria for Filled Composite Columns --
4.9.3.1.Limitations --
4.9.3.2.Compressive Strength --
4.9.3.3.Tensile Strength --
4.9.3.4.Shear Strength --
4.9.3.5.Load Transfer --
4.9.4.Summary of Composite Design Column --
4.9.4.1.Nominal Strength of Composite Sections --
4.9.4.2.Encased Composite Columns --
4.9.4.3.Filled Composite Columns --
4.9.5.Combined Axial Force and Flexure --
Preview --
5.1.Design Considerations --
5.2.Variation of Wind Velocity with Height (Velocity Profile) --
5.3.Probabilistic Approach --
5.4.Vortex Shedding --
5.5.ASCE 7-05 Wind Load Provisions --
5.5.1.Analytical Procedure: Method 2, Overview --
5.5.2.Analytical Method: Step-by-Step Procedure --
5.5.3.Wind Speed-Up over Hills and Escarpments: Kzt Factor --
5.5.4.Gust Effect Factor --
5.5.4.1.Gust Effect Factor G for Rigid Structure: Simplified Method --
5.5.4.2.Gust Effect Factor G for Rigid Structure: Improved Method --
5.5.4.3.Gust Effect Factor Gf for Flexible or Dynamically Sensitive Buildings --
5.5.5.Along-Wind Displacement and Acceleration --
5.5.6.Summary of ASCE 7-05 Wind Provisions --
5.6.Wind-Tunnel Tests --
5.6.1.Types of Wind-Tunnel Tests --
5.6.2.Option for Wind-Tunnel Testing --
5.6.3.Lower Limits on Wind-Tunnel Test Results --
5.6.3.1.Lower Limit on Pressures for Main Wind-Force Resisting System --
5.6.3.2.Lower Limit on Pressures for Components and Cladding --
5.7.Building Drift --
5.8.Human Response to Wind-Induced Building Motions --
5.9.Structural Properties Required for Wind Tunnel Data Analysis --
5.9.1.Natural Frequencies --
5.9.2.Mode Shapes --
5.9.3.Mass Distribution --
5.9.4.Damping Ratio --
5.9.5.Miscellaneous Information --
5.10.Period Determination for Wind Design --
5.11.ASCE 7-10 Wind Load Provisions --
5.11.1.New Wind Speed Maps --
5.11.2.Return of Exposure D --
5.11.3.Wind-Borne Debris --
Preview --
6.1.Structural Dynamics --
6.1.1.Dynamic Loads --
6.1.1.1.Concept of Dynamic Load Factor --
6.1.1.2.Difference between Static and Dynamic Analysis --
6.1.1.3.Dynamic Effects due to Wind Gusts --
6.1.2.Characteristics of a Dynamic Problem --
6.1.3.Multiple Strategy of Seismic Design --
6.1.3.1.Example of Portal Frame Subject to Ground Motions --
6.1.4.Concept of Dynamic Equilibrium --
6.1.5.Free Vibrations --
6.1.6.Earthquake Excitation --
6.1.6.1.Single-Degree-of-Freedom Systems --
6.1.6.2.Numerical Integration, Design Example --
6.1.6.3.Numerical Integration: A Summary --
6.1.6.4.Summary of Structural Dynamics --
6.1.7.Response Spectrum Method --
6.1.7.1.Earthquake Response Spectrum --
6.1.7.2.Deformation Response Spectrum --
6.1.7.3.Pseudo-Velocity Response Spectrum --
6.1.7.4.Pseudo-Acceleration Response Spectrum --
6.1.7.5.Tripartite Response Spectrum: Combined Displacement[-]Velocity[-]Acceleration Spectrum --
6.1.7.6.Characteristics of Response Spectrum --
6.1.7.7.Difference between Design and Actual Response Spectra --
6.1.7.8.Summary of Response Spectrum Analysis --
6.1.8.Hysteresis Loop --
6.2.Seismic Design Considerations --
6.2.1.Seismic Response of Buildings
Responsibility: Bungale S. Taranath.
More information:

Reviews

Editorial reviews

Publisher Synopsis

Dr. Taranath has produced a serious state-of-the-art book on tall steel and composite structures. As with his phenomenally successful text Reinforced Concrete Design of Tall Buildings, this new book Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/777260020>
library:oclcnum"777260020"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/777260020>
rdf:typeschema:Book
schema:about
<http://id.worldcat.org/fast/1142309>
rdf:typeschema:Intangible
schema:name"Tall buildings--Design and construction"@en
schema:name"Tall buildings--Design and construction."@en
schema:about
schema:about
schema:about
schema:about
schema:copyrightYear"2012"
schema:creator
schema:datePublished"2012"
schema:description"Machine generated contents note: Preview -- 1.1.Rigid Frames -- 1.1.1.Frames with Partially Rigid Connections -- 1.1.2.Review of Connection Behavior -- 1.1.2.1.Connection Classification -- 1.1.2.2.Connection Strength -- 1.1.2.3.Connection Ductility -- 1.1.2.4.Structural Analysis and Design -- 1.1.3.Beam Line Concept -- 1.2.Frames with Fully Restrained Connections -- 1.2.1.Special Moment Frame, Historic Perspective -- 1.2.1.1.Deflection Characteristics -- 1.2.2.Cantilever Bending Component -- 1.2.3.Shear Racking Component -- 1.2.4.Methods of Analysis -- 1.2.5.Drift Calculations -- 1.2.6.Truss Moment Frames -- 1.3.Concentric Braced Frames -- 1.3.1.Behavior -- 1.3.2.Types of Concentric Braces -- 1.4.Eccentric Braced Frames -- 1.4.1.Behavior -- 1.4.2.Deflection Characteristics -- 1.4.3.Seismic Design Considerations -- 1.4.3.1.Link Beam Design -- 1.4.3.2.Link-to-Column Connections -- 1.4.3.3.Diagonal Brace and Beam outside of Links -- 1.4.3.4.Link Stiffness -- 1.4.3.5.Columns -- 1.4.3.6.Schematic Details -- 1.5.Buckling-Restrained Brace Frame -- 1.6.Steel Plate Shear Wall -- 1.6.1.Low-Seismic Design -- 1.6.2.High-Seismic Design -- 1.6.2.1.Behavior -- 1.6.2.2.AISC 341-05 Requirements for Special Plate Shear Walls -- 1.6.2.3.Modeling for Analysis -- 1.6.2.4.Capacity Design Methods -- 1.7.Staggered Truss -- 1.7.1.Behavior -- 1.7.2.Design Considerations -- 1.7.2.1.Floor Systems -- 1.7.2.2.Columns -- 1.7.2.3.Trusses -- 1.7.3.Seismic Design of Staggered Truss System -- 1.7.3.1.Response of Staggered Truss System to Seismic Loads -- 1.8.Interacting System of Braced and Rigid Frames -- 1.8.1.Behavior -- 1.9.Core and Outrigger Systems -- 1.9.1.Behavior -- 1.9.1.1.Outrigger Located at Top -- 1.9.1.2.Outrigger Located at Three-Quarter Height from Bottom -- 1.9.1.3.Outrigger at Mid-Height -- 1.9.1.4.Outriggers at Quarter-Height from Bottom -- 1.9.2.Optimum Location of a Single Outrigger -- 1.9.2.1.Analysis Outline -- 1.9.2.2.Detail Analysis -- 1.9.2.3.Computer Analysis -- 1.9.2.4.Conclusions -- 1.9.3.Optimum Locations of Two Outriggers -- 1.9.3.1.Recommendations for Optimum Locations -- 1.9.4.Vulnerability of Core and Outrigger System to Progressive Collapse -- 1.9.5.Offset Outriggers -- 1.9.6.Example Projects -- 1.10.Frame Tube Systems -- 1.10.1.Behavior -- 1.10.2.Shear Lag -- 1.11.Irregular Tube -- 1.12.Trussed Tube -- 1.13.Bundled lithe -- 1.13.1.Behavior -- 1.14.Ultimate High-Efficiency Systems for Ultra Tall Buildings -- Preview -- 2.1.Composite Members -- 2.1.1.Composite Slabs -- 2.1.2.Composite Girders -- 2.1.3.Composite Columns -- 2.1.4.Composite Diagonals -- 2.1.5.Composite Shear Walls -- 2.2.Composite Subsystems -- 2.2.1.Composite Moment Frames -- 2.2.1.1.Ordinary Moment Frames -- 2.2.1.2.Special Moment Frames -- 2.2.2.Composite Braced Frames -- 2.2.3.Composite Eccentrically Braced Frames -- 2.2.4.Composite Construction -- 2.2.5.Temporary Bracing -- 2.3.Composite Building Systems -- 2.3.1.Reinforced Concrete Core with Steel Surround -- 2.3.2.Shear Wall-Frame Interacting Systems -- 2.3.3.Composite Tube Systems -- 2.3.4.Vertically Mixed Systems -- 2.3.5.Mega Frames with Super Columns -- 2.3.6.High-Efficiency Structure: Structural Concept -- 2.4.Seismic Design of Composite Buildings -- Preview -- 3.1.General Considerations -- 3.1.1.Steel and Cast Iron: Historical Perspective -- 3.1.1.1.Chronology of Steel Buildings -- 3.1.1.2.1920 through 1950 -- 3.1.1.3.1950 through 1970 -- 3.1.1.4.1970 to Present -- 3.1.2.Gravity Loads -- 3.1.3.Design Load Combinations -- 3.1.4.Required Strength -- 3.1.5.Limit States -- 3.1.6.Design for Strength Using Load and Resistance Factor Design -- 3.1.7.Serviceability Concerns -- 3.1.8.Deflections -- 3.2.Design of Members Subject to Compression -- 3.2.1.Buckling of Columns, Fundamentals -- 3.2.1.1.Euler's Formula -- 3.2.1.2.Energy Method of Calculating Critical Loads -- 3.2.2.Behavior of Compression Members -- 3.2.2.1.Element Instability -- 3.2.3.Limits on Slenderness Ratio, KL/r -- 3.2.4.Column Curves: Compressive Strength of Members without Slender Elements -- 3.2.5.Columns with Slender Unstiffened Elements: Yield Stress Reduction Factor, Q -- 3.2.6.Design Examples: Compression Members -- 3.2.6.1.Wide Flange Column, Design Example -- 3.2.6.2.HSS Column, Design Example -- 3.3.Design of Members Subject to Bending -- 3.3.1.Compact, Noncompact, and Slender Sections -- 3.3.2.Flexural Design of Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis -- 3.3.3.Design Examples, Members Subject to Bending and Shear -- 3.3.3.1.General Comments -- 3.3.3.2.Simple-Span Beam, Braced Top Flange -- 3.3.3.3.Simple-Span Beam, Unbraced Top Flange -- 3.4.Tension Members -- 3.4.1.Design Examples -- 3.4.1.1.Plate in Tension, Bolted Connection -- 3.4.1.2.Plate in Tension, Welded Connection -- 3.4.1.3.Double-Angle Hanger -- 3.4.1.4.Bottom Chord of a Long-Span Truss -- 3.4.1.5.Pin-Connected Tension Member -- 3.4.1.6.Eyebar Tension Member -- 3.5.Design for Shear, Additional Comments -- 3.5.1.Transverse Stiffeners -- 3.5.2.Tension Field Action -- 3.6.Design of Members for Combined Forces and Torsion (in Other Words, Members Subjected to Torture) -- 3.7.Design for Stability -- 3.7.1.Behavior of Beam Columns -- 3.7.2.Buckling of Columns -- 3.7.3.Second-Order Effects -- 3.7.4.Deformation of the Structure -- 3.7.5.Residual Stresses -- 3.7.6.Notional Load -- 3.7.7.Geometric Imperfections -- 3.7.8.Leaning Columns -- 3.8.AISC 360-10 Stability Provisions -- 3.8.1.Second-Order Analysis -- 3.8.2.Reduced Stiffness in the Analysis -- 3.8.3.Application of Notional Loads -- 3.8.4.Member Strength Checks -- 3.8.5.Step-by-Step Procedure for Direct Analysis Method -- 3.9.Understanding How Commercial Software Works -- Preview -- 4.1.Composite Metal Deck -- 4.1.1.SDI Specifications -- 4.2.Composite Beams -- 4.2.1.AISC Design Criteria: Composite Beams with Metal Deck and Concrete Topping -- 4.2.1.1.AISC Requirements, General Comments -- 4.2.1.2.Effective Width -- 4.2.1.3.Positive Flexural Strength -- 4.2.1.4.Negative Flexural Strength -- 4.2.1.5.Shear Connectors -- 4.2.1.6.Deflection Considerations -- 4.2.1.7.Design Outline for Composite Beam -- 4.3.Composite Joists and Trusses -- 4.3.1.Composite Joists -- 4.3.2.Composite Trusses -- 4.4.Other Types of Composite Floor Construction -- 4.5.Continuous Composite Beams -- 4.6.Nonprismatic Composite Beams and Girders -- 4.7.Moment-Connected Composite Haunch Girders -- 4.8.Composite Stub Girders -- 4.8.1.Behavior and Analysis -- 4.8.2.Stub Girder Design Example -- 4.8.3.Moment-Connected Stub Girder -- 4.8.4.Strengthening of Stub Girder -- 4.9.Composite Columns -- 4.9.1.Behavior -- 4.9.2.AISC Design Criteria, Encased Composite Columns -- 4.9.2.1.Limitations -- 4.9.2.2.Compressive Strength -- 4.9.2.3.Tensile Strength -- 4.9.2.4.Shear Strength -- 4.9.2.5.Load Transfer -- 4.9.2.6.Detailing Requirements -- 4.9.2.7.Strength of Stud Shear Connectors -- 4.9.3.AISC Design Criteria for Filled Composite Columns -- 4.9.3.1.Limitations -- 4.9.3.2.Compressive Strength -- 4.9.3.3.Tensile Strength -- 4.9.3.4.Shear Strength -- 4.9.3.5.Load Transfer -- 4.9.4.Summary of Composite Design Column -- 4.9.4.1.Nominal Strength of Composite Sections -- 4.9.4.2.Encased Composite Columns -- 4.9.4.3.Filled Composite Columns -- 4.9.5.Combined Axial Force and Flexure -- Preview -- 5.1.Design Considerations -- 5.2.Variation of Wind Velocity with Height (Velocity Profile) -- 5.3.Probabilistic Approach -- 5.4.Vortex Shedding -- 5.5.ASCE 7-05 Wind Load Provisions -- 5.5.1.Analytical Procedure: Method 2, Overview -- 5.5.2.Analytical Method: Step-by-Step Procedure -- 5.5.3.Wind Speed-Up over Hills and Escarpments: Kzt Factor -- 5.5.4.Gust Effect Factor -- 5.5.4.1.Gust Effect Factor G for Rigid Structure: Simplified Method -- 5.5.4.2.Gust Effect Factor G for Rigid Structure: Improved Method -- 5.5.4.3.Gust Effect Factor Gf for Flexible or Dynamically Sensitive Buildings -- 5.5.5.Along-Wind Displacement and Acceleration -- 5.5.6.Summary of ASCE 7-05 Wind Provisions -- 5.6.Wind-Tunnel Tests -- 5.6.1.Types of Wind-Tunnel Tests -- 5.6.2.Option for Wind-Tunnel Testing -- 5.6.3.Lower Limits on Wind-Tunnel Test Results -- 5.6.3.1.Lower Limit on Pressures for Main Wind-Force Resisting System -- 5.6.3.2.Lower Limit on Pressures for Components and Cladding -- 5.7.Building Drift -- 5.8.Human Response to Wind-Induced Building Motions -- 5.9.Structural Properties Required for Wind Tunnel Data Analysis -- 5.9.1.Natural Frequencies -- 5.9.2.Mode Shapes -- 5.9.3.Mass Distribution -- 5.9.4.Damping Ratio -- 5.9.5.Miscellaneous Information -- 5.10.Period Determination for Wind Design -- 5.11.ASCE 7-10 Wind Load Provisions -- 5.11.1.New Wind Speed Maps -- 5.11.2.Return of Exposure D -- 5.11.3.Wind-Borne Debris -- Preview -- 6.1.Structural Dynamics -- 6.1.1.Dynamic Loads -- 6.1.1.1.Concept of Dynamic Load Factor -- 6.1.1.2.Difference between Static and Dynamic Analysis -- 6.1.1.3.Dynamic Effects due to Wind Gusts -- 6.1.2.Characteristics of a Dynamic Problem -- 6.1.3.Multiple Strategy of Seismic Design -- 6.1.3.1.Example of Portal Frame Subject to Ground Motions -- 6.1.4.Concept of Dynamic Equilibrium -- 6.1.5.Free Vibrations -- 6.1.6.Earthquake Excitation -- 6.1.6.1.Single-Degree-of-Freedom Systems -- 6.1.6.2.Numerical Integration, Design Example -- 6.1.6.3.Numerical Integration: A Summary -- 6.1.6.4.Summary of Structural Dynamics -- 6.1.7.Response Spectrum Method -- 6.1.7.1.Earthquake Response Spectrum -- 6.1.7.2.Deformation Response Spectrum -- 6.1.7.3.Pseudo-Velocity Response Spectrum -- 6.1.7.4.Pseudo-Acceleration Response Spectrum -- 6.1.7.5.Tripartite Response Spectrum: Combined Displacement[-]Velocity[-]Acceleration Spectrum -- 6.1.7.6.Characteristics of Response Spectrum -- 6.1.7.7.Difference between Design and Actual Response Spectra -- 6.1.7.8.Summary of Response Spectrum Analysis -- 6.1.8.Hysteresis Loop -- 6.2.Seismic Design Considerations -- 6.2.1.Seismic Response of Buildings"@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/483371333>
schema:inLanguage"en"
schema:name"Structural analysis and design of tall buildings : steel and composite construction"@en
schema:numberOfPages"635"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.