skip to content
A Study in Derived Algebraic Geometry : Volume I: Correspondences and Duality. Preview this item
ClosePreview this item
Checking...

A Study in Derived Algebraic Geometry : Volume I: Correspondences and Duality.

Author: Dennis Gaitsgory; Nick Rozenblyum
Publisher: Providence : American Mathematical Society, 2017.
Series: Mathematical surveys and monographs.
Edition/Format:   eBook : Document : English
Summary:
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a "renormalization" of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Gaitsgory, Dennis
A Study in Derived Algebraic Geometry : Volume I: Correspondences and Duality
Providence : American Mathematical Society,c2017
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Dennis Gaitsgory; Nick Rozenblyum
ISBN: 9781470440855 1470440857
OCLC Number: 1000452377
Notes: Description based upon print version of record.
Description: 1 online resource (577 p.)
Contents: Cover; Title page; Back Cover
Series Title: Mathematical surveys and monographs.

Abstract:

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1000452377> # A Study in Derived Algebraic Geometry Volume I: Correspondences and Duality.
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "1000452377" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/4575161070#Place/providence> ; # Providence
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/riu> ;
    schema:about <http://dewey.info/class/516.35/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4575161070#Topic/algebraic_geometry_co_homology_theory_differentials_and_other_special_sheaves> ; # Algebraic geometry -- (Co)homology theory -- Differentials and other special sheaves
    schema:about <http://experiment.worldcat.org/entity/work/data/4575161070#Topic/d_modules> ; # D-modules
    schema:about <http://experiment.worldcat.org/entity/work/data/4575161070#Topic/bernstein_sato_ideals_and_polynomials> ; # Bernstein-Sato ideals and polynomials
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/4575161070#Person/rozenblyum_nick> ; # Nick Rozenblyum
    schema:creator <http://experiment.worldcat.org/entity/work/data/4575161070#Person/gaitsgory_dennis> ; # Dennis Gaitsgory
    schema:datePublished "2017" ;
    schema:description "Cover; Title page; Back Cover"@en ;
    schema:description "Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a "renormalization" of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a surv."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4575161070> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/4575161070#Series/mathematical_surveys_and_monographs> ; # Mathematical surveys and monographs.
    schema:isSimilarTo <http://worldcat.org/entity/work/data/4575161070#CreativeWork/a_study_in_derived_algebraic_geometry_volume_i_correspondences_and_duality> ;
    schema:name "A Study in Derived Algebraic Geometry Volume I: Correspondences and Duality."@en ;
    schema:productID "1000452377" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1000452377#PublicationEvent/providence_american_mathematical_society_2017> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/4575161070#Agent/american_mathematical_society> ; # American Mathematical Society
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=4940247> ;
    schema:workExample <http://worldcat.org/isbn/9781470440855> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1000452377> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4575161070#Agent/american_mathematical_society> # American Mathematical Society
    a bgn:Agent ;
    schema:name "American Mathematical Society" ;
    .

<http://experiment.worldcat.org/entity/work/data/4575161070#Person/gaitsgory_dennis> # Dennis Gaitsgory
    a schema:Person ;
    schema:familyName "Gaitsgory" ;
    schema:givenName "Dennis" ;
    schema:name "Dennis Gaitsgory" ;
    .

<http://experiment.worldcat.org/entity/work/data/4575161070#Person/rozenblyum_nick> # Nick Rozenblyum
    a schema:Person ;
    schema:familyName "Rozenblyum" ;
    schema:givenName "Nick" ;
    schema:name "Nick Rozenblyum" ;
    .

<http://experiment.worldcat.org/entity/work/data/4575161070#Series/mathematical_surveys_and_monographs> # Mathematical surveys and monographs.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1000452377> ; # A Study in Derived Algebraic Geometry Volume I: Correspondences and Duality.
    schema:name "Mathematical surveys and monographs." ;
    schema:name "Mathematical Surveys and Monographs ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/4575161070#Topic/algebraic_geometry_co_homology_theory_differentials_and_other_special_sheaves> # Algebraic geometry -- (Co)homology theory -- Differentials and other special sheaves
    a schema:Intangible ;
    schema:name "Algebraic geometry -- (Co)homology theory -- Differentials and other special sheaves"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4575161070#Topic/bernstein_sato_ideals_and_polynomials> # Bernstein-Sato ideals and polynomials
    a schema:Intangible ;
    schema:name "Bernstein-Sato ideals and polynomials"@en ;
    .

<http://worldcat.org/entity/work/data/4575161070#CreativeWork/a_study_in_derived_algebraic_geometry_volume_i_correspondences_and_duality>
    a schema:CreativeWork ;
    rdfs:label "A Study in Derived Algebraic Geometry : Volume I: Correspondences and Duality" ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1000452377> ; # A Study in Derived Algebraic Geometry Volume I: Correspondences and Duality.
    .

<http://worldcat.org/isbn/9781470440855>
    a schema:ProductModel ;
    schema:isbn "1470440857" ;
    schema:isbn "9781470440855" ;
    .

<http://www.worldcat.org/title/-/oclc/1000452377>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1000452377> ; # A Study in Derived Algebraic Geometry Volume I: Correspondences and Duality.
    schema:dateModified "2017-11-10" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.