přejít na obsah
Supervised learning with complex-valued neural networks Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Supervised learning with complex-valued neural networks

Autor Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
Vydavatel: Berlin ; New York : Springer, ©2013.
Edice: Studies in computational intelligence, 421.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
ISBN: 9783642294914 364229491X 3642294901 9783642294907
OCLC číslo: 805398598
Popis: 1 online resource.
Obsahy: Introduction --
Fully Complex-valued Multi Layer Perceptron Networks --
A Fully Complex-valued Radial Basis Function Network and Its Learning Algorithm --
Fully Complex-valued Relaxation Networks --
Performance Study on Complex-valued Function Approximation Problems --
Circular Complex-valued Extreme Learning Machine Classifier --
Performance Study on Real-valued Classification Problems --
Complex-valued Self-regulatory Resource Allocation Network (CSRAN).
Název edice: Studies in computational intelligence, 421.
Odpovědnost: Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha.
Více informací:

Anotace:

A new generation of neural networks is needed in telecommunications, medical imaging and signal processing as signals become more complex and nonlinear. This survey of the latest complex-valued  Přečíst více...

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/805398598>
library:oclcnum"805398598"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1149975527>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Supervised learning with complex-valued neural networks"
schema:publication
schema:publisher
schema:url<http://dx.doi.org/10.1007/978-3-642-29491-4>
schema:url<http://site.ebrary.com/id/10656630>
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.