omitir hasta el contenido
Supervised learning with complex-valued neural networks Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Supervised learning with complex-valued neural networks

Autor: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
Editorial: Berlin ; New York : Springer, ©2013.
Serie: Studies in computational intelligence, 421.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
ISBN: 9783642294914 364229491X 3642294901 9783642294907
Número OCLC: 805398598
Descripción: 1 online resource.
Contenido: Introduction --
Fully Complex-valued Multi Layer Perceptron Networks --
A Fully Complex-valued Radial Basis Function Network and Its Learning Algorithm --
Fully Complex-valued Relaxation Networks --
Performance Study on Complex-valued Function Approximation Problems --
Circular Complex-valued Extreme Learning Machine Classifier --
Performance Study on Real-valued Classification Problems --
Complex-valued Self-regulatory Resource Allocation Network (CSRAN).
Título de la serie: Studies in computational intelligence, 421.
Responsabilidad: Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha.
Más información:

Resumen:

A new generation of neural networks is needed in telecommunications, medical imaging and signal processing as signals become more complex and nonlinear. This survey of the latest complex-valued  Leer más

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/805398598>
library:oclcnum"805398598"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/805398598>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1149975527>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Supervised learning with complex-valued neural networks"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-642-29491-4>
schema:url<http://site.ebrary.com/id/10656630>
schema:workExample
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.