doorgaan naar inhoud
Supervised learning with complex-valued neural networks Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Supervised learning with complex-valued neural networks

Auteur: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
Uitgever: Berlin ; New York : Springer, ©2013.
Serie: Studies in computational intelligence, 421.
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
ISBN: 9783642294914 364229491X 3642294901 9783642294907
OCLC-nummer: 805398598
Beschrijving: 1 online resource.
Inhoud: Introduction --
Fully Complex-valued Multi Layer Perceptron Networks --
A Fully Complex-valued Radial Basis Function Network and Its Learning Algorithm --
Fully Complex-valued Relaxation Networks --
Performance Study on Complex-valued Function Approximation Problems --
Circular Complex-valued Extreme Learning Machine Classifier --
Performance Study on Real-valued Classification Problems --
Complex-valued Self-regulatory Resource Allocation Network (CSRAN).
Serietitel: Studies in computational intelligence, 421.
Verantwoordelijkheid: Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha.
Meer informatie:

Fragment:

A new generation of neural networks is needed in telecommunications, medical imaging and signal processing as signals become more complex and nonlinear. This survey of the latest complex-valued  Meer lezen...

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/805398598>
library:oclcnum"805398598"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/805398598>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1149975527>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Supervised learning with complex-valued neural networks"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-642-29491-4>
schema:url<http://site.ebrary.com/id/10656630>
schema:workExample
schema:workExample

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.