pular para conteúdo
Supervised learning with complex-valued neural networks Ver prévia deste item
FecharVer prévia deste item
Checando...

Supervised learning with complex-valued neural networks

Autor: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
Editora: Berlin ; New York : Springer, ©2013.
Séries: Studies in computational intelligence, 421.
Edição/Formato   e-book : Documento : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Gênero/Forma: Electronic books
Tipo de Material: Documento, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Sundaram Suresh; Narasimhan Sundararajan; Ramasamy Savitha
ISBN: 9783642294914 364229491X 3642294901 9783642294907
Número OCLC: 805398598
Descrição: 1 online resource.
Conteúdos: Introduction --
Fully Complex-valued Multi Layer Perceptron Networks --
A Fully Complex-valued Radial Basis Function Network and Its Learning Algorithm --
Fully Complex-valued Relaxation Networks --
Performance Study on Complex-valued Function Approximation Problems --
Circular Complex-valued Extreme Learning Machine Classifier --
Performance Study on Real-valued Classification Problems --
Complex-valued Self-regulatory Resource Allocation Network (CSRAN).
Título da Série: Studies in computational intelligence, 421.
Responsabilidade: Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha.
Mais informações:

Resumo:

A new generation of neural networks is needed in telecommunications, medical imaging and signal processing as signals become more complex and nonlinear. This survey of the latest complex-valued  Ler mais...

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/805398598>
library:oclcnum"805398598"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1149975527>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Supervised learning with complex-valued neural networks"
schema:publication
schema:publisher
schema:url<http://dx.doi.org/10.1007/978-3-642-29491-4>
schema:url<http://site.ebrary.com/id/10656630>
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.