doorgaan naar inhoud
Sur le processus de Schramm-Loewner et la limite continue de la percolation critique plane Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Sur le processus de Schramm-Loewner et la limite continue de la percolation critique plane

Auteur: Julien Dubédat; Wendelin Werner; Université de Paris-Sud.
Uitgever: [S.l.] : [s.n.], 2004.
Proefschrift: Thèse doctorat : Mathématiques : Paris 11 : 2004.
Editie/Formaat:   Scriptie/Proefschrift : Scriptie/Dissertatie : Engels
Database:WorldCat
Samenvatting:
L'objet de ce travail est l'étude de certaines propriétés de l'Evolution de Schramm-Loewner (SLE), en particulier en relation avec la limite continue de la percolation critique plane. On considère d'abord les martingales holomorphes du SLE, les géométries planes associées, et dans le cas du SLE(6) la famille de systèmes holonomes satisfaits par des événements naturels pour la percolation critique. On
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Scriptie/Dissertatie
Soort document: Boek
Alle auteurs / medewerkers: Julien Dubédat; Wendelin Werner; Université de Paris-Sud.
OCLC-nummer: 491616810
Opmerkingen: Thèse rédigée majoritairement en anglais.
Beschrijving: 118 p. : ill. ; 30 cm.
Verantwoordelijkheid: Julien Dubédat ; sous la dir. de Wendelin Werner.

Fragment:

L'objet de ce travail est l'étude de certaines propriétés de l'Evolution de Schramm-Loewner (SLE), en particulier en relation avec la limite continue de la percolation critique plane. On considère d'abord les martingales holomorphes du SLE, les géométries planes associées, et dans le cas du SLE(6) la famille de systèmes holonomes satisfaits par des événements naturels pour la percolation critique. On étudie ensuite une famille de mouvements browniens plans réfléchis liés au SLE; en particulier, on interprète la formule de Watts, énoncée dans le contexte de la percolation critique, en termes de mouvement brownien réfléchi.Puis on examine les formules de percolation liées à des configurations annulaires; la convergence des interfaces de percolation vers le SLE(6) permet d'exprimer ces questions comme des problèmes de première sortie pour un processus de Markov à valeurs dans un espace de modules. La conjecture de dualité pour le SLE porte sur la loi de la frontière du SLE lorsque celui-ci n'est pas une courbe simple; on formule des conjectures précises, basées sur l'étude des formules de restriction. Enfin, on prouve l'existence de décompositions en excursions pour le SLE par rapport aux points de frontière et aux points de coupure. Incidemment, ceci permet de prouver rigoureusement une formule de percolation, la formule de Watts.

The subject of this work is the study of several properties of the Schramm-Loewner Evolution (SLE), particularly in relation with the scaling limit of critical plane percolation. Firstly, one considers holomorphic martingales of SLE, the associated plane geometries, and, in the case of SLE(6), the family of holonomic systems satisfied by some natural events for critical percolation. Then, one studies a family of plane reflected Brownian motions connected with SLE; in particular, one gives an interpretation of Watts formula, which was enunciated in the critical percolation context, in terms of reflected brownian motion. One also examinates percolation formulae attached to annular configurations; the convergence of critical percolation interfaces to SLE(6) leads to an expression of these questions as first exit problems for a Markov process taking values in a modular space. The duality conjecture for SLE pertains to the law of the SLE boundary when this SLE is not a simple path; one formulates precise conjectures based on the analysis of restriction formulae. Lastly, one proves the existence of excursion decompositions for SLE with respect to frontier points and cutpoints respectively. Incidentally, this leads to a rigorous proof of a percolation formula, Watts formula.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Verwante onderwerpen:(2)

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/491616810>
bgn:inSupportOf"Thèse doctorat : Mathématiques : Paris 11 : 2004."
library:oclcnum"491616810"
library:placeOfPublication
library:placeOfPublication
rdf:typebgn:Thesis
rdf:typeschema:Book
rdf:valueUnknown value: deg
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2004"
schema:description"L'objet de ce travail est l'étude de certaines propriétés de l'Evolution de Schramm-Loewner (SLE), en particulier en relation avec la limite continue de la percolation critique plane. On considère d'abord les martingales holomorphes du SLE, les géométries planes associées, et dans le cas du SLE(6) la famille de systèmes holonomes satisfaits par des événements naturels pour la percolation critique. On étudie ensuite une famille de mouvements browniens plans réfléchis liés au SLE; en particulier, on interprète la formule de Watts, énoncée dans le contexte de la percolation critique, en termes de mouvement brownien réfléchi.Puis on examine les formules de percolation liées à des configurations annulaires; la convergence des interfaces de percolation vers le SLE(6) permet d'exprimer ces questions comme des problèmes de première sortie pour un processus de Markov à valeurs dans un espace de modules. La conjecture de dualité pour le SLE porte sur la loi de la frontière du SLE lorsque celui-ci n'est pas une courbe simple; on formule des conjectures précises, basées sur l'étude des formules de restriction. Enfin, on prouve l'existence de décompositions en excursions pour le SLE par rapport aux points de frontière et aux points de coupure. Incidemment, ceci permet de prouver rigoureusement une formule de percolation, la formule de Watts."
schema:description"The subject of this work is the study of several properties of the Schramm-Loewner Evolution (SLE), particularly in relation with the scaling limit of critical plane percolation. Firstly, one considers holomorphic martingales of SLE, the associated plane geometries, and, in the case of SLE(6), the family of holonomic systems satisfied by some natural events for critical percolation. Then, one studies a family of plane reflected Brownian motions connected with SLE; in particular, one gives an interpretation of Watts formula, which was enunciated in the critical percolation context, in terms of reflected brownian motion. One also examinates percolation formulae attached to annular configurations; the convergence of critical percolation interfaces to SLE(6) leads to an expression of these questions as first exit problems for a Markov process taking values in a modular space. The duality conjecture for SLE pertains to the law of the SLE boundary when this SLE is not a simple path; one formulates precise conjectures based on the analysis of restriction formulae. Lastly, one proves the existence of excursion decompositions for SLE with respect to frontier points and cutpoints respectively. Incidentally, this leads to a rigorous proof of a percolation formula, Watts formula."
schema:exampleOfWork<http://worldcat.org/entity/work/id/366607049>
schema:inLanguage"en"
schema:name"Sur le processus de Schramm-Loewner et la limite continue de la percolation critique plane"
schema:numberOfPages"118"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.