zum Inhalt wechseln
Symplectic fibrations and multiplicity diagrams Titelvorschau
SchließenTitelvorschau
Prüfung…

Symplectic fibrations and multiplicity diagrams

Verfasser/in: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
Verlag: Cambridge ; New York : Cambridge University Press, 1996.
Ausgabe/Format   Buch : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Medientyp: Internetquelle
Dokumenttyp: Buch, Internet-Ressource
Alle Autoren: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
ISBN: 0521443237 9780521443234
OCLC-Nummer: 33333376
Beschreibung: xiv, 222 pages : illustrations ; 24 cm
Inhalt: 1. Symplectic Fibrations --
2. Examples of Symplectic Fibrations: The Coadjoint Orbit Hierarchy --
3. Duistermaat-Heckman Polynomials --
4. Symplectic Fibrations and Multiplicity Diagrams --
5. Computations with Orbits --
App. A. Multiplicity Formulas --
App. B. Equivariant Cohomology --
App. C. Update.
Verfasserangabe: Victor Guillemin, Eugene Lerman, Shlomo Sternberg.
Weitere Informationen:

Abstract:

"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H."

"The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization."

"Students and researchers in geometry and mathematical physics will find this book fascinating."--Jacket.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/33333376>
library:oclcnum"33333376"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1996"
schema:description""The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization.""@en
schema:description""Students and researchers in geometry and mathematical physics will find this book fascinating."--Jacket."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/462297173>
schema:inLanguage"en"
schema:name"Symplectic fibrations and multiplicity diagrams"@en
schema:publication
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33333376>
schema:reviewBody""Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H.""
schema:workExample
wdrs:describedby

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.