コンテンツへ移動
Symplectic fibrations and multiplicity diagrams 資料のプレビュー
閉じる資料のプレビュー
確認中…

Symplectic fibrations and multiplicity diagrams

著者: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
出版: Cambridge ; New York : Cambridge University Press, 1996.
エディション/フォーマット:   書籍 : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient
評価:

(まだ評価がありません) 0 件のレビュー - まずはあなたから!

件名
関連情報

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: インターネット資料
ドキュメントの種類: 図書, インターネットリソース
すべての著者/寄与者: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
ISBN: 0521443237 9780521443234
OCLC No.: 33333376
形態 xiv, 222 p. : ill. ; 24 cm.
コンテンツ: 1. Symplectic Fibrations --
2. Examples of Symplectic Fibrations: The Coadjoint Orbit Hierarchy --
3. Duistermaat-Heckman Polynomials --
4. Symplectic Fibrations and Multiplicity Diagrams --
5. Computations with Orbits --
App. A. Multiplicity Formulas --
App. B. Equivariant Cohomology --
App. C. Update.
責任者: Victor Guillemin, Eugene Lerman, Shlomo Sternberg.
その他の情報:

概要:

"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H.".

"The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization.".

"Students and researchers in geometry and mathematical physics will find this book fascinating."--BOOK JACKET.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/33333376>
library:oclcnum"33333376"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/33333376>
rdf:typeschema:Book
rdfs:seeAlso
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Groupes symplectiques."
schema:about
rdf:typeschema:Intangible
schema:name"Groupes, Théorie des."
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Représentations de groupes."
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:author
schema:contributor
schema:contributor
schema:datePublished"1996"
schema:exampleOfWork<http://worldcat.org/entity/work/id/462297173>
schema:inLanguage"en"
schema:name"Symplectic fibrations and multiplicity diagrams"
schema:numberOfPages"222"
schema:publisher
rdf:typeschema:Organization
schema:name"Cambridge University Press"
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33333376>
schema:reviewBody""Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H."."
schema:workExample
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.