doorgaan naar inhoud
Symplectic fibrations and multiplicity diagrams Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Symplectic fibrations and multiplicity diagrams

Auteur: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
Uitgever: Cambridge ; New York : Cambridge University Press, 1996.
Editie/Formaat:   Boek : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Internetbron
Soort document: Boek, Internetbron
Alle auteurs / medewerkers: Victor Guillemin; Eugene Lerman; Shlomo Sternberg
ISBN: 0521443237 9780521443234
OCLC-nummer: 33333376
Beschrijving: xiv, 222 pages : illustrations ; 24 cm
Inhoud: 1. Symplectic Fibrations --
2. Examples of Symplectic Fibrations: The Coadjoint Orbit Hierarchy --
3. Duistermaat-Heckman Polynomials --
4. Symplectic Fibrations and Multiplicity Diagrams --
5. Computations with Orbits --
App. A. Multiplicity Formulas --
App. B. Equivariant Cohomology --
App. C. Update.
Verantwoordelijkheid: Victor Guillemin, Eugene Lerman, Shlomo Sternberg.
Meer informatie:

Fragment:

"Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H."

"The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization."

"Students and researchers in geometry and mathematical physics will find this book fascinating."--Jacket.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/33333376>
library:oclcnum"33333376"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1996"
schema:description""The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization.""@en
schema:description""Students and researchers in geometry and mathematical physics will find this book fascinating."--Jacket."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/462297173>
schema:inLanguage"en"
schema:name"Symplectic fibrations and multiplicity diagrams"@en
schema:publication
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33333376>
schema:reviewBody""Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H.""
schema:workExample
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.