skip to content
Symplectic geometry of integrable Hamiltonian systems Preview this item
ClosePreview this item

Symplectic geometry of integrable Hamiltonian systems

Author: Michèle Audin; Ana Cannas da Silva; Eugene Lerman
Publisher: Basel [u.a.] : Birkhäuser, c 2003.
Series: Advanced courses in mathematics - CRM Barcelona.
Edition/Format:   Print book : EnglishView all editions and formats

(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Genre/Form: Kongress
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Michèle Audin; Ana Cannas da Silva; Eugene Lerman
ISBN: 3764321679 9783764321673
OCLC Number: 249363044
Notes: Literaturverz. S. [223] - 225.
Description: X, 225 S. : graph. Darst. ; 560 gr.
Contents: A Lagrangian Submanifolds.- I Lagrangian and special Lagrangian immersions in C".- I.1 Symplectic form on C", symplectic vector spaces.- Ll.a Symplectic vector spaces.- I.l.b Symplectic bases.- I.l.c The symplectic form as a differential form.- I.l.d The symplectic group.- I.l.e Orthogonality, isotropy.- 1.2 Lagrangian subspaces.- I.2.a Definition of Lagrangian subspaces.- I.2.b The symplectic reduction.- 1.3 The Lagrangian Grassmannian.- I.3.a The Grassmannian A"t as a homogeneous space.- I.3.b The manifold An.- I.3.c The tautological vector bundle.- I.3.d The tangent bundle to A".- I.3.e The case of oriented Lagrangian subspaces.- I.3.f The determinant and the Maslov class.- I.4 Lagrangian submanifolds in Cn.- I.4.a Lagrangian submanifolds described by functions.- I.4.b Wave fronts.- I.4.c Other examples.- I.4.d The Gauss map.- I.5 Special Lagrangian submanifolds in Cn.- I.5.a Special Lagrangian subspaces.- I.5.b Special Lagrangian submanifolds.- I.5.c Graphs of forms.- I.5.d Normal bundles of surfaces.- I.5.e From integrable systems.- I.5.f Special Lagrangian submanifolds invariant under SO(n)..- I.6 Appendices.- I.6.a The topology of the symplectic group.- I.6.b Complex structures.- I.6.c Hamiltonian vector fields, integrable systems.- Exercises.- II Lagrangian and special Lagrangian submanifolds in symplectic and Calabi-Yau manifolds.- II.1 Symplectic manifolds.- II.2 Lagrangian submanifolds and immersions.- II.2.a In cotangent bundles.- I1.3 Tubular neighborhoods of Lagrangian submanifolds.- II.3.a Moser's method.- II.3.b Tubular neighborhoods.- II.3.c"Moduli space" of Lagrangian submanifolds.- II.4 Calabi-Yau manifolds.- II.4.a Definition of the Calabi-Yau manifolds.- II.4.b Yau's theorem.- II.4.c Examples of Calabi-Yau manifolds.- II.4.d Special Lagrangian submanifolds.- II.5 Special Lagrangians in real Calabi-Yau manifolds.- II.5.a Real manifolds.- II.5.b Real Calabi-Yau manifolds.- II.5.c The example of elliptic curves 68.- II.5.d Special Lagrangians in real Calabi-Yau manifolds.- 11.6 Moduli space of special Lagrangian submanifolds.- I1.7 Towards mirror symmetry?.- II.7.a Fibrations in special Lagrangian submanifolds 74.- II.7.b Mirror symmetry.- Exercises.- B Symplectic Toric Manifolds.- I Symplectic Viewpoint.- I.1 Symplectic Toric Manifolds.- I.1.1 Symplectic Manifolds.- I.1.2 Hamiltonian Vector Fields.- I.1.3 Integrable Systems.- I.1.4 Hamiltonian Actions.- I.1.5 Hamiltonian Torus Actions.- 1.1.6 Symplectic Toric Manifolds.- I.2 Classification.- 1.2.1 Delzant's Theorem.- I.2.2 Orbit Spaces.- I.2.3 Symplectic Reduction.- I.2.4 Extensions of Symplectic Reduction.- I.2.5 Delzant's Construction.- I.2.6 Idea Behind Delzant's Construction.- I.3 Moment Polytopes.- I.3.1 Equivariant Darboux Theorem.- I.3.2 Morse Theory.- I.3.3 Homology of Symplectic Toric Manifolds.- I.3.4 Symplectic Blow-Up.- I.3.5 Blow-Up of Toric Manifolds.- I.3.6 Symplectic Cutting.- II Algebraic Viewpoint.- II.1 Toric Varieties.- II.1.1 Affine Varieties.- II.1.2 Rational Maps on Affine Varieties.- II.1.3 Projective Varieties.- II.1.4 Rational Maps on Projective Varieties.- II.1.5 Quasiprojective Varieties.- II.1.6 Toric Varieties.- II.2 Classification.- 1I.2.1 Spectra.- II.2.2 Toric Varieties Associated to Semigroups.- I1.2.3 Classification of Affine Toric Varieties.- II.2.4 Fans.- 1I.2.5 Toric Varieties Associated to Fans.- 1I.2.6 Classification of Normal Toric Varieties.- I1.3 Moment Polytopes.- II.3.1 Equivariantly Projective Toric Varieties.- II.3.2 Weight Polytopes.- II.3.3 Orbit Decomposition.- II.3.4 Fans from Polytopes.- II.3.5 Classes of Toric Varieties.- II.3.6 Symplectic vs. Algebraic.- C Geodesic Flows and Contact Toric Manifolds.- I From toric integrable geodesic flows to contact toric manifolds.- I.1 Introduction.- 1.2 Symplectic cones and contact manifolds.- II Contact group actions and contact moment maps.- III Proof of Theorem I.38.- III.1 Homogeneous vector bundles and slices.- III.2 The 3-dimensional case.- III.3 Uniqueness of symplectic toric manifolds.- III3.1 Cecil. cohomology.- III.4 Proof of Theorem I.38, part three.- III.4.1 Morse theory on orbifolds.- List of Contributors.
Series Title: Advanced courses in mathematics - CRM Barcelona.
Responsibility: Michèle Audin; Ana Cannas da Silva; Eugene Lerman.
More information:


Editorial reviews

Publisher Synopsis

"This book, an expanded version of the lectures delivered by the authors at the 'Centre de Recerca Matematica' Barcelona in July 2001, is designed for a modern introduction to symplectic and contact Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Symplectic geometry of integrable Hamiltonian systems
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "249363044" ;
   library:placeOfPublication <> ; # Basel u.a.
   library:placeOfPublication <> ;
   schema:about <> ; # Symplektische Mannigfaltigkeit
   schema:about <> ; # Hamilton-Prinzip--Symplektische Geometrie
   schema:about <> ;
   schema:about <> ; # Hamiltonsches System--Integrables System--Symplektische Geometrie--Barcelona <2001>
   schema:about <> ; # Symplektische Geometrie--Hamilton-Prinzip
   schema:about <> ; # Hamiltonsches System ; SWD-ID: 41399432
   schema:about <> ; # Hamiltonian systems
   schema:about <> ; # Symplectic manifolds
   schema:about <> ; # Symplektische Mannigfaltigkeit ; SWD-ID: 42907044
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <> ; # Ana Cannas da Silva
   schema:contributor <> ; # Eugene Lerman
   schema:contributor <> ; # Michèle Audin
   schema:copyrightYear "200" ;
   schema:datePublished "2003" ;
   schema:exampleOfWork <> ;
   schema:genre "Kongress" ;
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # Advanced courses in mathematics - CRM Barcelona.
   schema:name "Symplectic geometry of integrable Hamiltonian systems" ;
   schema:productID "249363044" ;
   schema:publication <> ;
   schema:publisher <> ; # Birkhäuser
   schema:url <> ;
   schema:url <> ;
   schema:url <> ;
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # Michèle Audin
    a schema:Person ;
   schema:familyName "Audin" ;
   schema:givenName "Michèle" ;
   schema:name "Michèle Audin" ;

<> # Ana Cannas da Silva
    a schema:Person ;
   schema:familyName "Cannas da Silva" ;
   schema:givenName "Ana" ;
   schema:name "Ana Cannas da Silva" ;

<> # Eugene Lerman
    a schema:Person ;
   schema:familyName "Lerman" ;
   schema:givenName "Eugene" ;
   schema:name "Eugene Lerman" ;

<> # Advanced courses in mathematics - CRM Barcelona.
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # Symplectic geometry of integrable Hamiltonian systems
   schema:name "Advanced courses in mathematics - CRM Barcelona." ;
   schema:name "Advanced courses in mathematics - CRM Barcelona" ;

<> # Hamilton-Prinzip--Symplektische Geometrie
    a schema:Intangible ;
   schema:name "Hamilton-Prinzip--Symplektische Geometrie" ;

<> # Hamiltonsches System--Integrables System--Symplektische Geometrie--Barcelona <2001>
    a schema:Intangible ;
   schema:name "Hamiltonsches System--Integrables System--Symplektische Geometrie--Barcelona <2001>" ;

<> # Hamiltonsches System ; SWD-ID: 41399432
    a schema:Intangible ;
   schema:name "Hamiltonsches System ; SWD-ID: 41399432" ;

<> # Symplektische Geometrie--Hamilton-Prinzip
    a schema:Intangible ;
   schema:name "Symplektische Geometrie--Hamilton-Prinzip" ;

<> # Symplektische Mannigfaltigkeit
    a schema:Intangible ;
   schema:name "Symplektische Mannigfaltigkeit" ;

<> # Symplektische Mannigfaltigkeit ; SWD-ID: 42907044
    a schema:Intangible ;
   schema:name "Symplektische Mannigfaltigkeit ; SWD-ID: 42907044" ;

<> # Symplectic manifolds
    a schema:Intangible ;
   schema:name "Symplectic manifolds" ;

<> # Hamiltonian systems
    a schema:Intangible ;
   schema:name "Hamiltonian systems" ;

    a schema:ProductModel ;
   schema:isbn "3764321679" ;
   schema:isbn "9783764321673" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.