skip to content
The theory of algebraic number fields Preview this item
ClosePreview this item
Checking...

The theory of algebraic number fields

Author: David Hilbert
Publisher: Berlin ; New York : Springer, ©1998.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: David Hilbert
ISBN: 3540627790 9783540627791
OCLC Number: 39787283
Description: xxxvi, 350 p. ; 25 cm.
Contents: 1. Algebraic Numbers and Number Fields.- 2. Ideals of Number Fields.- 3. Congruences with Respect to Ideals.- 4. The Discriminant of a Field and its Divisors.- 5. Extension Fields.- 6. Units of a Field.- 7. Ideal Classes of a Field.- 8. Reducible Forms of a Field.- 9. Orders in a Field.- 10. Prime Ideals of a Galois Number Field and its Subfields.- 11. The Differents and Discriminants of a Galois Number Field and its Subfields.- 12. Connexion Between the Arithmetic and Algebraic Properties of a Galois Number Field.- 13. Composition of Number Fields.- 14. The Prime Ideals of Degree 1 and the Class Concept.- 15. Cyclic Extension Fields of Prime Degree.- 16. Factorisation of Numbers in Quadratic Fields.- 17. Genera in Quadratic Fields and Their Character Sets.- 18. Existence of Genera in Quadratic Fields.- 19. Determination of the Number of Ideal Classes of a Quadratic Field.- 20. Orders and Modules of Quadratic Fields.- 21. The Roots of Unity with Prime Number Exponent l and the Cyclotomic Field They Generate.- 22. The Roots of Unity for a Composite Exponent m and the Cyclotomic Field They Generate.- 23. Cyclotomic Fields as Abelian Fields.- 24. The Root Numbers of the Cyclotomic Field of the l-th Roots of Unity.- 25. The Reciprocity Law for l-th Power Residues Between a Rational Number and a Number in the Field of l-th Roots of Unity.- 26. Determination of the Number of Ideal Classes in the Cyclotomic Field of the m-th Roots of Unity.- 27. Applications of the Theory of Cyclotomic Fields to Quadratic Fields.- 28. Factorisation of the Numbers of the Cyclotomic Field in a Kummer Field.- 29. Norm Residues and Non-residues of a Kummer Field.- 30. Existence of Infinitely Many Prime Ideals with Prescribed Power Characters in a Kummer Field.- 31. Regular Cyclotomic Fields.- 32. Ambig Ideal Classes and Genera in Regular Kummer Fields.- 33. The l-th Power Reciprocity Law in Regular Cyclotomic Fields.- 34. The Number of Genera in a Regular Kummer Field.- 35. New Foundation of the Theory of Regular Kummer Fields.- 36. The Diophantine Equation ?m + ?m + ?m = 0.- References.- List of Theorems and Lemmas.
Other Titles: Theorie der algebraischen Zahlkörper.
Responsibility: David Hilbert ; translated from the German by Iain T. Adamson ; with an introduction from Franz Lemmermeyer and Norbert Schappacher.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/39787283>
library:oclcnum"39787283"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/39787283>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:copyrightYear"1998"
schema:creator
schema:datePublished"1998"
schema:exampleOfWork<http://worldcat.org/entity/work/id/24044417>
schema:inLanguage"en"
schema:name"The theory of algebraic number fields"@en
schema:numberOfPages"350"
schema:publisher
schema:url
schema:workExample
umbel:isLike<http://d-nb.info/954297199>
umbel:isLike<http://bnb.data.bl.uk/id/resource/GB9911556>

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.