skip to content
Theory of Matroids Preview this item
ClosePreview this item
Checking...

Theory of Matroids

Author: Neil White
Publisher: Cambridge : Cambridge University Press, 1986.
Series: Encyclopedia of mathematics and its applications, no. 26.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Neil White
ISBN: 9780511629563 0511629567 9780521309370 0521309379 9781107093904 1107093902
OCLC Number: 776957067
Notes: Title from publishers bibliographic system (viewed 22 Dec 2011).
Description: 1 online resource (340 pages).
Contents: 1. Examples and Basic Concepts Henry Crapo; 2. Axiom Systems Giorgio Nicoletti and Neil White; 3. Lattices Ulrich Faigle; 4. Basis-Exchange Properties Joseph P. S. Kung; 5. Orthogonality Henry Crapo; 6. Graphs and Series-Parallel Networks James Oxley; 7. Constructions Thomas Brylawski; 8. Strong Maps Joseph P. S. Kung; 9. Weak Maps Joseph P. S. Kung and Hein Q. Nguyen; 10. Semimodular Functions Hein Q. Nguyen.
Series Title: Encyclopedia of mathematics and its applications, no. 26.
Responsibility: edited by Neil White.

Abstract:

Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/776957067> # Theory of Matroids
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "776957067" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/140791930#Place/cambridge> ; # Cambridge
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    schema:about <http://id.worldcat.org/fast/1012435> ; # Matroids
    schema:about <http://dewey.info/class/511.6/e19/> ;
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/140791930#Person/white_neil> ; # Neil White
    schema:datePublished "1986" ;
    schema:description "Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/140791930> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/140791930#Series/encyclopedia_of_mathematics_and_its_applications> ; # Encyclopedia of mathematics and its applications ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/140791930#CreativeWork/> ;
    schema:name "Theory of Matroids"@en ;
    schema:productID "776957067" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/776957067#PublicationEvent/cambridge_cambridge_university_press_1986> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/140791930#Agent/cambridge_university_press> ; # Cambridge University Press
    schema:url <http://www.survey.bris.ac.uk/standrews/cambridgebooksonlinetrial> ;
    schema:url <http://www.myilibrary.com?id=546065> ;
    schema:url <http://dx.doi.org/10.1017/CBO9780511629563> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=1182362> ;
    schema:workExample <http://worldcat.org/isbn/9781107093904> ;
    schema:workExample <http://worldcat.org/isbn/9780521309370> ;
    schema:workExample <http://worldcat.org/isbn/9780511629563> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/776957067> ;
    .


Related Entities

<http://dx.doi.org/10.1017/CBO9780511629563>
    rdfs:comment "Connect to e-book" ;
    .

<http://experiment.worldcat.org/entity/work/data/140791930#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
    schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/140791930#Person/white_neil> # Neil White
    a schema:Person ;
    schema:familyName "White" ;
    schema:givenName "Neil" ;
    schema:name "Neil White" ;
    .

<http://experiment.worldcat.org/entity/work/data/140791930#Series/encyclopedia_of_mathematics_and_its_applications> # Encyclopedia of mathematics and its applications ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/776957067> ; # Theory of Matroids
    schema:name "Encyclopedia of mathematics and its applications ;" ;
    schema:name "Encyclopedia of Mathematics and its Applications ;" ;
    .

<http://id.worldcat.org/fast/1012435> # Matroids
    a schema:Intangible ;
    schema:name "Matroids"@en ;
    .

<http://worldcat.org/isbn/9780511629563>
    a schema:ProductModel ;
    schema:isbn "0511629567" ;
    schema:isbn "9780511629563" ;
    .

<http://worldcat.org/isbn/9780521309370>
    a schema:ProductModel ;
    schema:isbn "0521309379" ;
    schema:isbn "9780521309370" ;
    .

<http://worldcat.org/isbn/9781107093904>
    a schema:ProductModel ;
    schema:isbn "1107093902" ;
    schema:isbn "9781107093904" ;
    .

<http://www.survey.bris.ac.uk/standrews/cambridgebooksonlinetrial>
    rdfs:comment "We have trial access to this e-book until 31/7/2012 through our Cambridge Books Online trial of over 12,000 titles. Please tell us if you would like to recommend continued access to it" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.