# Thermodynamics of computation and information distance

著者： Charles H Bennett Amsterdam, the Netherlands : Centrum voor Wiskunde en Informatica, [1993] Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture, CS-R9341. 紙書籍 : Englishすべてのエディションとフォーマットを見る Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E₁ is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures.A third information distance, based on the idea that one should aim for dissipationless computations, and hence for reversible ones, is given by the length [formula] of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E₂ = E₁, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion.Another information distance, E₃, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, [formula]. Finally, using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process."  続きを読む (まだ評価がありません) 0 件のレビュー - 是非あなたから！

この資料の所蔵館を検索中…

## 詳細

ドキュメントの種類 書籍 Charles H Bennett この著者についてさらに詳しく： Charles H Bennett 31184844 "June 1993." 15 pages ; 29 cm. Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture, CS-R9341. C.H. Bennett [and others].

### 概要：

Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E₁ is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures.

A third information distance, based on the idea that one should aim for dissipationless computations, and hence for reversible ones, is given by the length [formula] of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E₂ = E₁, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion.

Another information distance, E₃, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, [formula]. Finally, using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process."

ユーザーレビュー

まずはあなたから！

## 類似資料

### 件名：(1)

リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

## リンクデータ

### Primary Entity

<http://www.worldcat.org/oclc/31184844> # Thermodynamics of computation and information distance
a schema:Book, schema:CreativeWork ;
library:oclcnum "31184844" ;
library:placeOfPublication <http://id.loc.gov/vocabulary/countries/ne> ;
library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/444227015#Place/amsterdam_the_netherlands> ; # Amsterdam, the Netherlands
schema:about <http://id.worldcat.org/fast/988345> ; # Kolmogorov complexity
schema:bookFormat bgn:PrintBook ;
schema:contributor <http://experiment.worldcat.org/entity/work/data/444227015#Person/bennett_charles_h> ; # Charles H. Bennett
schema:datePublished "1993" ;
schema:description "Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E₁ is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures."@en ;
schema:description "Another information distance, E₃, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, [formula]. Finally, using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process.""@en ;
schema:description "A third information distance, based on the idea that one should aim for dissipationless computations, and hence for reversible ones, is given by the length [formula] of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E₂ = E₁, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion."@en ;
schema:exampleOfWork <http://worldcat.org/entity/work/id/444227015> ;
schema:inLanguage "en" ;
schema:isPartOf <http://experiment.worldcat.org/entity/work/data/444227015#Series/report_centrum_voor_wiskunde_en_informatica_amsterdam_netherlands_computer_science_dept_of_algorithmics_and_architecture> ; # Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture ;
schema:isPartOf <http://worldcat.org/issn/0169-118X> ; # Report = Rapport / Centrum voor Wiskunde en Informatica. Computer Science/Dept. of Algorithmics and Architecture,
schema:name "Thermodynamics of computation and information distance"@en ;
schema:productID "31184844" ;
schema:publication <http://www.worldcat.org/title/-/oclc/31184844#PublicationEvent/amsterdam_the_netherlands_centrum_voor_wiskunde_en_informatica_1993> ;
schema:publisher <http://experiment.worldcat.org/entity/work/data/444227015#Agent/centrum_voor_wiskunde_en_informatica> ; # Centrum voor Wiskunde en Informatica
wdrs:describedby <http://www.worldcat.org/title/-/oclc/31184844> ;
.

### Related Entities

<http://experiment.worldcat.org/entity/work/data/444227015#Agent/centrum_voor_wiskunde_en_informatica> # Centrum voor Wiskunde en Informatica
a bgn:Agent ;
schema:name "Centrum voor Wiskunde en Informatica" ;
.

<http://experiment.worldcat.org/entity/work/data/444227015#Person/bennett_charles_h> # Charles H. Bennett
a schema:Person ;
schema:familyName "Bennett" ;
schema:givenName "Charles H." ;
schema:name "Charles H. Bennett" ;
.

<http://experiment.worldcat.org/entity/work/data/444227015#Place/amsterdam_the_netherlands> # Amsterdam, the Netherlands
a schema:Place ;
schema:name "Amsterdam, the Netherlands" ;
.

<http://experiment.worldcat.org/entity/work/data/444227015#Series/report_centrum_voor_wiskunde_en_informatica_amsterdam_netherlands_computer_science_dept_of_algorithmics_and_architecture> # Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture ;
a bgn:PublicationSeries ;
schema:hasPart <http://www.worldcat.org/oclc/31184844> ; # Thermodynamics of computation and information distance
schema:name "Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture ;" ;
.

<http://id.worldcat.org/fast/988345> # Kolmogorov complexity
a schema:Intangible ;
schema:name "Kolmogorov complexity"@en ;
.

<http://worldcat.org/issn/0169-118X> # Report = Rapport / Centrum voor Wiskunde en Informatica. Computer Science/Dept. of Algorithmics and Architecture,
a bgn:PublicationSeries ;
schema:hasPart <http://www.worldcat.org/oclc/31184844> ; # Thermodynamics of computation and information distance
schema:issn "0169-118X" ;
schema:name "Report = Rapport / Centrum voor Wiskunde en Informatica. Computer Science/Dept. of Algorithmics and Architecture," ;
.

Content-negotiable representations

WorldCatにログインしてください

アカウントをお持ちではないですか？簡単に 無料アカウントを作成することができます。.