컨텐츠로 이동
Thermodynamics of computation and information distance 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Thermodynamics of computation and information distance

저자: Charles H Bennett
출판사: Amsterdam, the Netherlands : Centrum voor Wiskunde en Informatica, [1993]
시리즈: Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture, CS-R9341.
판/형식:   도서 : 영어모든 판과 형식 보기
데이터베이스:WorldCat
요약:
Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable,
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

문서 형식:
모든 저자 / 참여자: Charles H Bennett
OCLC 번호: 31184844
메모: "June 1993."
설명: 15 pages ; 29 cm.
일련 제목: Report (Centrum voor Wiskunde en Informatica (Amsterdam, Netherlands). Computer Science/Dept. of Algorithmics and Architecture, CS-R9341.
책임: C.H. Bennett [and others].

초록:

Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E₁ is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures.

A third information distance, based on the idea that one should aim for dissipationless computations, and hence for reversible ones, is given by the length [formula] of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E₂ = E₁, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion.

Another information distance, E₃, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, [formula]. Finally, using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process."

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기

유사 항목

관련 주제:(1)

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/31184844>
library:oclcnum"31184844"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/31184844>
rdf:typeschema:Book
schema:about
<http://id.worldcat.org/fast/988345>
rdf:typeschema:Intangible
schema:name"Kolmogorov complexity"@en
schema:name"Kolmogorov complexity."@en
schema:about
schema:contributor
schema:datePublished"1993"
schema:description"Abstract: "Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities [formula]. Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E₁ is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures."@en
schema:description"Another information distance, E₃, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, [formula]. Finally, using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process.""@en
schema:description"A third information distance, based on the idea that one should aim for dissipationless computations, and hence for reversible ones, is given by the length [formula] of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E₂ = E₁, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/444227015>
schema:inLanguage"en"
schema:name"Thermodynamics of computation and information distance"@en
schema:publisher
schema:url

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.