skip to content
Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics Preview this item
ClosePreview this item

Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics

Author: Bernhelm Booss; David D Bleecker; Adolf Mader
Publisher: New York ; Berlin ; Heidelberg : Springer, cop. 1985.
Series: Universitext
Edition/Format:   Print book : EnglishView all editions and formats

With intensified use of mathematical ideas, the methods and techniques of the various sciences and those for the solution of practical problems demand of the mathematician not only greater readi-  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Bernhelm Booss; David D Bleecker; Adolf Mader
ISBN: 3540961127 9783540961123 0387961127 9780387961125
OCLC Number: 467937301
Notes: Bibliogr. p. 417-427. Index.
Description: XVI-451 p. : graph. ; 24 cm.
Contents: I. Operators with Index.- 1. Fredholm Operators.- A. Hierarchy of Mathematical Objects.- B. Concept of Fredholm Operator.- 2. Algebraic Properties. Operators of Finite Rank.- A. The Snake Lemma.- B. Operators of Finite Rank and Fredholm Integral Equations.- 3. Analytic Methods. Compact Operators.- A. Analytic Methods.- B. The Adjoint Operator.- C. Compact Operators.- D. The Classical Integral Operators.- 4. The Fredholm Alternative.- A. The Riesz Lemma.- B. Sturm-Liouville Boundary-Value Problem.- 5. The Main Theorems.- A. The Calkin Algebra.- B. Perturbation Theory.- C. Homotopy-Invariance of the Index.- 6. Families of Invertible Operators. Kuiper's Theorem.- A. Homotopies of Operator-Valued Functions.- B. The Theorem of Kuiper.- 7. Families of Fredholm Operators. Index Bundles.- A. The Topology of F.- B. The Construction of Index Bundles.- C. The Theorem of Atiyah-Janich.- D. Homotopy and Unitary Equivalence.- 8. Fourier Series and Integrals (Fundamental Principles).- A. Fourier Series.- B. The Fourier Integral.- C. Higher Dimensional Fourier Integrals.- 9. Wiener-Hopf Operators.- A. The Reservoir of Examples of Fredholm Operators.- B. Origin and Fundamental Significance of Wiener-Hopf Operators.- C. The Characteristic Curve of a Wiener-Hopf Operator.- D. Wiener-Hopf Operators and Harmonic Analysis.- E. The Discrete Index Formula.- F. The Case of Systems.- G. The Continuous Analogue.- II. Analysis on Manifolds.- 1. Partial Differential Equations.- A. Linear Partial Differential Equations.- B. Elliptic Differential Equations.- C. Where Do Elliptic Differential Operators Arise?.- D. Boundary-Value Conditions.- E. Main Problems of Analysis and the Index Problem.- F. Numerical Aspects.- G. Elementary Examples.- 2. Differential Operators over Manifolds.- A. Motivation.- B. Differentiable Manifolds - Foundations.- C. Geometry of C? Mappings.- D. Integration on Manifolds.- E. Differential Operators on Manifolds.- F. Manifolds with Boundary.- 3. Pseudo-Differential Operators.- A. Motivation.- B. "Canonical" Pseudo-Differential Operators.- C. Pseudo-Differential Operators on Manifolds.- D. Approximation Theory for Pseudo-Differential Operators.- 4. Sobolev Spaces (Crash Course).- A. Motivation.- B. Definition.- C. The Main Theorems on Sobolev Spaces.- D. Case Studies.- 5. Elliptic Operators over Closed Manifolds.- A. Continuity of Pseudo-Differential Operators.- B. Elliptic Operators.- 6. Elliptic Boundary-Value Systems I (Differential Operators).- A. Differential Equations with Constant Coefficients.- B. Systems of Differential Equations with Constant Coefficients.- C. Variable Coefficients.- 7. Elliptic Differential Operators of First Order with Boundary Conditions.- A. The Topological Interpretation of Boundary-Value Conditions (Case Study).- B. Generalizations (Heuristic).- 8. Elliptic Boundary-Value Systems II (Survey).- A. The Poisson Principle.- B. The Green Algebra.- C. The Elliptic Case.- III. The Atiyah-Singer Index Formula.- 1. Introduction to Algebraic Topology.- A. Winding Numbers.- B. The Topology of the General Linear Group.- C. The Ring of Vector Bundles.- D. K-Theory with Compact Support.- E. Proof of the Periodicity Theorem of R. Bott.- 2. The Index Formula in the Euclidean Case.- A. Index Formula and Bott Periodicity.- B. The Difference Bundle of an Elliptic Operator.- C. The Index Formula.- 3. The Index Theorem for Closed Manifolds.- A. The Index Formula.- B. Comparison of the Proofs: The Cobordism Proof.- C. Comparison of the Proofs: The Imbedding Proof.- D. Comparison of the Proofs: The Heat Equation Proof.- 4. Applications (Survey).- A. Cohomological Formulation of the Index Formula.- B. The Case of Systems (Trivial Bundles).- C. Examples of Vanishing Index.- D. Euler Number and Signature.- E. Vector Fields on Manifolds.- F. Abelian Integrals and Riemann Surfaces.- G. The Theorem of Riemann-Roch-Hirzebruch.- H. The Index of Elliptic Boundary-Value Problems.- J. Real Operators.- K. The Lefsehetz Fixed-Point Formula.- L. Analysis on Symmetric Spaces.- M. Further Applications.- IV. The Index Formula and Gauge-Theoretical Physics.- 1. Physical Motivation and Overview.- A. Classical Field Theory.- B. Quantum Theory.- 2. Geometric Preliminaries.- A. Principal G-Bundles.- B. Connections and Curvature.- C. Equivariant Forms and Associated Bundles.- D. Gauge Transformations.- E. Curvature in Riemannian Geometry.- F. Bochner-Weitzenbock Formulas.- G. Chern Classes as Curvature Forms.- H. Holonomy.- 3. Gauge-Theoretic Instantons.- A. The Yang-Mills Functional.- B. Instantons on Euclidean 4-Space.- C. Linearization of the "Manifold" of Moduli of Self-Dual Connections.- D. Manifold Structure for Moduli of Self-Dual Connections.- E. Gauge-Theoretic Topology in Dimension Four.- Appendix: What are Vector Bundles?.- Literature.- Index of Notation Parts I, II, III.- IV.- Index of Names/Authors.
Series Title: Universitext
Responsibility: B. Booss, D.D. Bleecker ; transl. by D.D. Bleecker and A. Mader.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "467937301" ;
   library:placeOfPublication <> ; # Berlin
   library:placeOfPublication <> ; # Heidelberg
   library:placeOfPublication <> ; # New York
   library:placeOfPublication <> ;
   schema:about <> ; # théorie jauge
   schema:about <> ;
   schema:about <> ; # Variétés (mathématiques)
   schema:about <> ; # variété
   schema:about <> ; # topologie algébrique
   schema:about <> ; # Champs de jauge (physique)
   schema:about <> ; # théorie opérateur
   schema:about <> ; # Opérateurs, Théorie des
   schema:about <> ; # Théorèmes d'indices
   schema:author <> ; # David D. Bleecker
   schema:author <> ; # Bernhelm Booss
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <> ; # David D. Bleecker
   schema:contributor <> ; # Adolf Mader
   schema:copyrightYear "op." ;
   schema:datePublished "1985" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # Universitext
   schema:name "Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics" ;
   schema:productID "467937301" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer
   schema:workExample <> ;
   schema:workExample <> ;
   wdrs:describedby <> ;

Related Entities

<> # New York
    a schema:Place ;
   schema:name "New York" ;

<> # Universitext
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics
   schema:name "Universitext" ;

<> # Champs de jauge (physique)
    a schema:Intangible ;
   schema:name "Champs de jauge (physique)" ;

<> # Opérateurs, Théorie des
    a schema:Intangible ;
   schema:name "Opérateurs, Théorie des" ;

<> # Théorèmes d'indices
    a schema:Intangible ;
   schema:name "Théorèmes d'indices" ;

<> # théorie opérateur
    a schema:Intangible ;
   schema:name "théorie opérateur" ;

<> # topologie algébrique
    a schema:Intangible ;
   schema:name "topologie algébrique" ;

<> # Variétés (mathématiques)
    a schema:Intangible ;
   schema:name "Variétés (mathématiques)" ;

<> # Bernhelm Booss
    a schema:Person ;
   schema:birthDate "1941" ;
   schema:deathDate "" ;
   schema:familyName "Booss" ;
   schema:givenName "Bernhelm" ;
   schema:name "Bernhelm Booss" ;

<> # Adolf Mader
    a schema:Person ;
   schema:familyName "Mader" ;
   schema:givenName "Adolf" ;
   schema:name "Adolf Mader" ;

<> # David D. Bleecker
    a schema:Person ;
   schema:familyName "Bleecker" ;
   schema:givenName "David D." ;
   schema:name "David D. Bleecker" ;

    a schema:ProductModel ;
   schema:isbn "0387961127" ;
   schema:isbn "9780387961125" ;

    a schema:ProductModel ;
   schema:isbn "3540961127" ;
   schema:isbn "9783540961123" ;

    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <> ; # Topology and analysis : the Atiyah-Singer index formula and gauge-theoretic physics
   schema:dateModified "2017-12-23" ;
   void:inDataset <> ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.