skip to content
Topology of manifolds; proceedings. Preview this item
ClosePreview this item
Checking...

Topology of manifolds; proceedings.

Author: J C Cantrell; C Henry Edwards; University of Georgia.
Publisher: Chicago, Markham [1970]
Series: Markham mathematics series
Edition/Format:   Print book : Conference publication : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Conference papers and proceedings
Congresses
Congrès
Additional Physical Format: Online version:
University of Georgia Topology of Manifolds Institute (2nd : 1969).
Topology of manifolds.
Chicago, Markham [1970]
(OCoLC)681179098
Material Type: Conference publication
Document Type: Book
All Authors / Contributors: J C Cantrell; C Henry Edwards; University of Georgia.
ISBN: 0841010188 9780841010185
OCLC Number: 119843
Description: xiv, 514 pages 24 cm.
Series Title: Markham mathematics series
Responsibility: Edited by J.C. Cantrell and C.H. Edwards, Jr.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/119843> # Topology of manifolds; proceedings.
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "119843" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/ilu> ;
   library:placeOfPublication <http://dbpedia.org/resource/Chicago> ; # Chicago
   schema:about <http://experiment.worldcat.org/entity/work/data/1240285#Topic/topology> ; # Topology
   schema:about <http://id.worldcat.org/fast/1007726> ; # Manifolds (Mathematics)
   schema:about <http://id.worldcat.org/fast/1152692> ; # Topology
   schema:about <http://experiment.worldcat.org/entity/work/data/1240285#Topic/varietes_mathematiques_congres> ; # Variétés (Mathématiques)--Congrès
   schema:about <http://experiment.worldcat.org/entity/work/data/1240285#Topic/topologie> ; # Topologie
   schema:about <http://dewey.info/class/514.223/> ;
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1240285#Organization/university_of_georgia> ; # University of Georgia.
   schema:creator <http://experiment.worldcat.org/entity/work/data/1240285#Meeting/university_of_georgia_topology_of_manifolds_institute_2nd_1969> ; # University of Georgia Topology of Manifolds Institute (2nd : 1969)
   schema:datePublished "1970" ;
   schema:editor <http://viaf.org/viaf/102402134> ; # Charles Henry Edwards
   schema:editor <http://viaf.org/viaf/91645304> ; # James Cecil Cantrell
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1240285> ;
   schema:genre "Conference papers and proceedings"@en ;
   schema:genre "Conference publication"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1240285#Series/markham_mathematics_series> ; # Markham mathematics series
   schema:isSimilarTo <http://www.worldcat.org/oclc/681179098> ;
   schema:name "Topology of manifolds; proceedings."@en ;
   schema:productID "119843" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/119843#PublicationEvent/chicago_markham1970> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1240285#Agent/markham> ; # Markham
   schema:workExample <http://worldcat.org/isbn/9780841010185> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/119843> ;
    .


Related Entities

<http://dbpedia.org/resource/Chicago> # Chicago
    a schema:Place ;
   schema:name "Chicago" ;
    .

<http://experiment.worldcat.org/entity/work/data/1240285#Meeting/university_of_georgia_topology_of_manifolds_institute_2nd_1969> # University of Georgia Topology of Manifolds Institute (2nd : 1969)
    a bgn:Meeting, schema:Event ;
   schema:name "University of Georgia Topology of Manifolds Institute (2nd : 1969)" ;
    .

<http://experiment.worldcat.org/entity/work/data/1240285#Organization/university_of_georgia> # University of Georgia.
    a schema:Organization ;
   schema:name "University of Georgia." ;
    .

<http://experiment.worldcat.org/entity/work/data/1240285#Series/markham_mathematics_series> # Markham mathematics series
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/119843> ; # Topology of manifolds; proceedings.
   schema:name "Markham mathematics series" ;
    .

<http://experiment.worldcat.org/entity/work/data/1240285#Topic/varietes_mathematiques_congres> # Variétés (Mathématiques)--Congrès
    a schema:Intangible ;
   schema:name "Variétés (Mathématiques)--Congrès"@fr ;
    .

<http://id.worldcat.org/fast/1007726> # Manifolds (Mathematics)
    a schema:Intangible ;
   schema:name "Manifolds (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/1152692> # Topology
    a schema:Intangible ;
   schema:name "Topology"@en ;
    .

<http://viaf.org/viaf/102402134> # Charles Henry Edwards
    a schema:Person ;
   schema:birthDate "1937" ;
   schema:familyName "Edwards" ;
   schema:givenName "Charles Henry" ;
   schema:givenName "C. Henry" ;
   schema:name "Charles Henry Edwards" ;
    .

<http://viaf.org/viaf/91645304> # James Cecil Cantrell
    a schema:Person ;
   schema:birthDate "1931" ;
   schema:familyName "Cantrell" ;
   schema:givenName "James Cecil" ;
   schema:givenName "J. C." ;
   schema:name "James Cecil Cantrell" ;
    .

<http://worldcat.org/isbn/9780841010185>
    a schema:ProductModel ;
   schema:isbn "0841010188" ;
   schema:isbn "9780841010185" ;
    .

<http://www.worldcat.org/oclc/681179098>
    a schema:CreativeWork ;
   rdfs:label "Topology of manifolds." ;
   schema:description "Online version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/119843> ; # Topology of manifolds; proceedings.
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.