skip to content
Transport of energetic electrons in solids : computer simulation with applications to materials analysis and characterization Preview this item
ClosePreview this item
Checking...

Transport of energetic electrons in solids : computer simulation with applications to materials analysis and characterization

Author: Maurizio Dapor
Publisher: Cham [Switzerland] ; New York : Springer, 2014.
Series: Springer tracts in modern physics, 257.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:

Transport of Energetic Electrons in Solids

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Maurizio Dapor
ISBN: 9783319038827 3319038826
OCLC Number: 866931291
Description: xiv, 146 p. : ill. ; 24 cm.
Contents: Machine generated contents note: 1.Electron Transport in Solids --
1.1.Electron-Beam Interactions with Solids --
1.2.Electron Energy-Loss Peaks --
1.3.Auger Electron Peaks --
1.4.Secondary Electron Peak --
1.5.Characterization of Materials --
1.6.Summary --
References --
2.Cross-Sections: Basic Aspects --
2.1.Cross-Section and Probability of Scattering --
2.2.Stopping Power and Inelastic Mean Free Path --
2.3.Range --
2.4.Energy Straggling --
2.5.Summary --
References --
3.Scattering Mechanisms --
3.1.Elastic Scattering --
3.1.1.Mott Cross-Section Versus Screened Rutherford Cross-Section --
3.2.Quasi-Elastic Scattering --
3.2.1.Electron-Phonon Interaction --
3.3.Inelastic Scattering --
3.3.1.Stopping: Bethe-Bloch Formula --
3.3.2.Stopping: Semi-empiric Formulas --
3.3.3.Dielectric Theory --
3.3.4.Sum of Drude Functions --
3.3.5.Polaronic Effect --
3.4.Inelastic Mean Free Path --
3.5.Surface Phenomena --
3.6.Summary --
References --
4.Random Numbers --
Contents note continued: 4.1.Generating Pseudo-Random Numbers --
4.2.Testing Pseudo-Random Number Generators --
4.3.Pseudo-Random Numbers Distributed According to a Given Probability Density --
4.4.Pseudo-Random Numbers Uniformly Distributed in the Interval [a, b] --
4.5.Pseudo-Random Numbers Distributed According to the Poisson Density of Probability --
4.6.Pseudo-Random Numbers Distributed According to the Gauss Density of Probability --
4.7.Summary --
References --
5.Monte Carlo Strategies --
5.1.The Continuous-Slowing-Down Approximation --
5.1.1.The Step-Length --
5.1.2.Interface Between Over-Layer and Substrate --
5.1.3.The Polar Scattering Angle --
5.1.4.Direction of the Electron After the Last Deflection --
5.1.5.The Energy Loss --
5.1.6.End of the Trajectory and Number of Trajectories --
5.2.The Energy-Straggling Strategy --
5.2.1.The Step-Length --
5.2.2.Elastic and Inelastic Scattering --
5.2.3.Electron-Electron Collisions: Scattering Angle --
Contents note continued: 5.2.4.Electron-Phonon Collisions: Scattering Angle --
5.2.5.Direction of the Electron After the Last Deflection --
5.2.6.Transmission Coefficient --
5.2.7.Inelastic Scattering Linkage to the Distance from the Surface --
5.2.8.End of the Trajectory and Number of Trajectories --
5.3.Summary --
References --
6.Backscattering Coefficient --
6.1.Electrons Backscattered from Bulk Targets --
6.1.1.The Backscattering Coefficient of C and Al Calculated by Using the Dielectric Theory (Ashley Stopping Power) --
6.1.2.The Backscattering Coefficient of Si, Cu, and Au Calculated by Using the Dielectric Theory (Tanuma et al. Stopping Power) --
6.2.Electrons Backscattered from One Layer Deposited on Semi-infinite Substrates --
6.2.1.Carbon Overlayers (Ashley Stopping Power) --
6.2.2.Gold Overlayers (Kanaya and Okayama Stopping Power) --
6.3.Electrons Backscattered from Two Layers Deposited on Semi-infinite Substrates --
Contents note continued: 6.4.A Comparative Study of Electron and Positron Backscattering Coefficients and Depth Distributions --
6.5.Summary --
References --
7.Secondary Electron Yield --
7.1.Secondary Electron Emission --
7.2.Monte Carlo Approaches to the Study of Secondary Electron Emission --
7.3.Specific MC Methodologies for SE Studies --
7.3.1.Continuous-Slowing-Down Approximation (CSDA Scheme) --
7.3.2.Energy-Straggling (ES Scheme) --
7.4.Secondary Electron Yield: PMMA and Al2O3 --
7.4.1.Secondary Electron Emission Yield as a Function of the Energy --
7.4.2.Comparison Between ES Scheme and Experiment --
7.4.3.Comparison Between CSDA and ES Schemes --
7.4.4.Comparison Between CSDA Scheme and Experiment --
7.4.5.CPU Time --
7.5.Summary --
References --
8.Electron Energy Distributions --
8.1.Monte Carlo Simulation of the Spectrum --
8.2.Plasmon Losses and Electron Energy Loss Spectroscopy --
8.2.1.Plasmon Losses in Graphite --
8.2.2.Plasmon Losses in Silicon Dioxide --
Contents note continued: 8.3.Energy Losses of Auger Electrons --
8.4.Elastic Peak Electron Spectroscopy --
8.5.Secondary Electron Spectrum --
8.5.1.Initial Polar and Azimuth Angle of the SEs --
8.5.2.Comparison with Theoretical and Experimental Data --
8.6.Summary --
References --
9.Applications --
9.1.Linewidth Measurement in Critical Dimension SEM --
9.1.1.Nanometrology and Linewidth Measurement in CD SEM --
9.1.2.Lateral and Depth Distributions --
9.1.3.Secondary Electron Yield as a Function of the Angle of Incidence --
9.1.4.Linescan of a Silicon Step --
9.1.5.Linescan of PMMA Lines on a Silicon Substrate --
9.2.Application to Energy Selective Scanning Electron Microscopy --
9.2.1.Doping Contrast --
9.2.2.Energy Selective Scanning Electron Microscopy --
9.3.Summary --
References --
10.Appendix A: Mott Theory --
10.1.Relativistic Partial Wave Expansion Method --
10.2.Analytic Approximation of the Mott Cross-Section --
10.3.The Atomic Potential --
10.4.Electron Exchange --
Contents note continued: 10.5.Solid-State Effects --
10.6.Positron Differential Elastic Scattering Cross-Section --
10.7.Summary --
References --
11.Appendix B: Frohlich Theory --
11.1.Electrons in Lattice Fields: Interaction Hamiltonian --
11.2.Electron-Phonon Scattering Cross-Section --
11.3.Summary --
References --
12.Appendix C: Ritchie Theory --
12.1.Energy Loss and Dielectric Function --
12.2.Homogeneous and Isotropic Solids --
12.3.Summary --
References --
13.Appendix D: Chen and Kwei and Li et al. Theory --
13.1.Outgoing and Incoming Electrons --
13.2.Probability of Inelastic Scattering --
13.3.Summary --
References.
Series Title: Springer tracts in modern physics, 257.
Responsibility: Maurizio Dapor.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/866931291>
library:oclcnum"866931291"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2014"
schema:description"Contents note continued: 6.4.A Comparative Study of Electron and Positron Backscattering Coefficients and Depth Distributions -- 6.5.Summary -- References -- 7.Secondary Electron Yield -- 7.1.Secondary Electron Emission -- 7.2.Monte Carlo Approaches to the Study of Secondary Electron Emission -- 7.3.Specific MC Methodologies for SE Studies -- 7.3.1.Continuous-Slowing-Down Approximation (CSDA Scheme) -- 7.3.2.Energy-Straggling (ES Scheme) -- 7.4.Secondary Electron Yield: PMMA and Al2O3 -- 7.4.1.Secondary Electron Emission Yield as a Function of the Energy -- 7.4.2.Comparison Between ES Scheme and Experiment -- 7.4.3.Comparison Between CSDA and ES Schemes -- 7.4.4.Comparison Between CSDA Scheme and Experiment -- 7.4.5.CPU Time -- 7.5.Summary -- References -- 8.Electron Energy Distributions -- 8.1.Monte Carlo Simulation of the Spectrum -- 8.2.Plasmon Losses and Electron Energy Loss Spectroscopy -- 8.2.1.Plasmon Losses in Graphite -- 8.2.2.Plasmon Losses in Silicon Dioxide --"@en
schema:description"Contents note continued: 4.1.Generating Pseudo-Random Numbers -- 4.2.Testing Pseudo-Random Number Generators -- 4.3.Pseudo-Random Numbers Distributed According to a Given Probability Density -- 4.4.Pseudo-Random Numbers Uniformly Distributed in the Interval [a, b] -- 4.5.Pseudo-Random Numbers Distributed According to the Poisson Density of Probability -- 4.6.Pseudo-Random Numbers Distributed According to the Gauss Density of Probability -- 4.7.Summary -- References -- 5.Monte Carlo Strategies -- 5.1.The Continuous-Slowing-Down Approximation -- 5.1.1.The Step-Length -- 5.1.2.Interface Between Over-Layer and Substrate -- 5.1.3.The Polar Scattering Angle -- 5.1.4.Direction of the Electron After the Last Deflection -- 5.1.5.The Energy Loss -- 5.1.6.End of the Trajectory and Number of Trajectories -- 5.2.The Energy-Straggling Strategy -- 5.2.1.The Step-Length -- 5.2.2.Elastic and Inelastic Scattering -- 5.2.3.Electron-Electron Collisions: Scattering Angle --"@en
schema:description"Contents note continued: 8.3.Energy Losses of Auger Electrons -- 8.4.Elastic Peak Electron Spectroscopy -- 8.5.Secondary Electron Spectrum -- 8.5.1.Initial Polar and Azimuth Angle of the SEs -- 8.5.2.Comparison with Theoretical and Experimental Data -- 8.6.Summary -- References -- 9.Applications -- 9.1.Linewidth Measurement in Critical Dimension SEM -- 9.1.1.Nanometrology and Linewidth Measurement in CD SEM -- 9.1.2.Lateral and Depth Distributions -- 9.1.3.Secondary Electron Yield as a Function of the Angle of Incidence -- 9.1.4.Linescan of a Silicon Step -- 9.1.5.Linescan of PMMA Lines on a Silicon Substrate -- 9.2.Application to Energy Selective Scanning Electron Microscopy -- 9.2.1.Doping Contrast -- 9.2.2.Energy Selective Scanning Electron Microscopy -- 9.3.Summary -- References -- 10.Appendix A: Mott Theory -- 10.1.Relativistic Partial Wave Expansion Method -- 10.2.Analytic Approximation of the Mott Cross-Section -- 10.3.The Atomic Potential -- 10.4.Electron Exchange --"@en
schema:description"Machine generated contents note: 1.Electron Transport in Solids -- 1.1.Electron-Beam Interactions with Solids -- 1.2.Electron Energy-Loss Peaks -- 1.3.Auger Electron Peaks -- 1.4.Secondary Electron Peak -- 1.5.Characterization of Materials -- 1.6.Summary -- References -- 2.Cross-Sections: Basic Aspects -- 2.1.Cross-Section and Probability of Scattering -- 2.2.Stopping Power and Inelastic Mean Free Path -- 2.3.Range -- 2.4.Energy Straggling -- 2.5.Summary -- References -- 3.Scattering Mechanisms -- 3.1.Elastic Scattering -- 3.1.1.Mott Cross-Section Versus Screened Rutherford Cross-Section -- 3.2.Quasi-Elastic Scattering -- 3.2.1.Electron-Phonon Interaction -- 3.3.Inelastic Scattering -- 3.3.1.Stopping: Bethe-Bloch Formula -- 3.3.2.Stopping: Semi-empiric Formulas -- 3.3.3.Dielectric Theory -- 3.3.4.Sum of Drude Functions -- 3.3.5.Polaronic Effect -- 3.4.Inelastic Mean Free Path -- 3.5.Surface Phenomena -- 3.6.Summary -- References -- 4.Random Numbers --"@en
schema:description"Contents note continued: 10.5.Solid-State Effects -- 10.6.Positron Differential Elastic Scattering Cross-Section -- 10.7.Summary -- References -- 11.Appendix B: Frohlich Theory -- 11.1.Electrons in Lattice Fields: Interaction Hamiltonian -- 11.2.Electron-Phonon Scattering Cross-Section -- 11.3.Summary -- References -- 12.Appendix C: Ritchie Theory -- 12.1.Energy Loss and Dielectric Function -- 12.2.Homogeneous and Isotropic Solids -- 12.3.Summary -- References -- 13.Appendix D: Chen and Kwei and Li et al. Theory -- 13.1.Outgoing and Incoming Electrons -- 13.2.Probability of Inelastic Scattering -- 13.3.Summary -- References."@en
schema:description"Contents note continued: 5.2.4.Electron-Phonon Collisions: Scattering Angle -- 5.2.5.Direction of the Electron After the Last Deflection -- 5.2.6.Transmission Coefficient -- 5.2.7.Inelastic Scattering Linkage to the Distance from the Surface -- 5.2.8.End of the Trajectory and Number of Trajectories -- 5.3.Summary -- References -- 6.Backscattering Coefficient -- 6.1.Electrons Backscattered from Bulk Targets -- 6.1.1.The Backscattering Coefficient of C and Al Calculated by Using the Dielectric Theory (Ashley Stopping Power) -- 6.1.2.The Backscattering Coefficient of Si, Cu, and Au Calculated by Using the Dielectric Theory (Tanuma et al. Stopping Power) -- 6.2.Electrons Backscattered from One Layer Deposited on Semi-infinite Substrates -- 6.2.1.Carbon Overlayers (Ashley Stopping Power) -- 6.2.2.Gold Overlayers (Kanaya and Okayama Stopping Power) -- 6.3.Electrons Backscattered from Two Layers Deposited on Semi-infinite Substrates --"@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1823485206>
schema:inLanguage"en"
schema:isPartOf
schema:name"Transport of energetic electrons in solids : computer simulation with applications to materials analysis and characterization"@en
schema:numberOfPages"146"
schema:publication
schema:publisher
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBB426371>
wdrs:describedby

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.