skip to content
The use of fractional integral operators for solving nonhomogeneous differential equations. Preview this item
ClosePreview this item
Checking...

The use of fractional integral operators for solving nonhomogeneous differential equations.

Author: T P Higgins; BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
Publisher: Ft. Belvoir Defense Technical Information Center DEC 1967.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
Although results using fractional integral operators can always be obtained by other methods, the succinct simplicity of the formulation may often suggest approaches which might not be evident in a classical approach. In this note homogeneous fractional integral operators and a homogeneous integral operator related to the Laplace transform are defined and some applications to nonhomogeneous differential equations  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: T P Higgins; BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
OCLC Number: 227497409
Description: 22 pages

Abstract:

Although results using fractional integral operators can always be obtained by other methods, the succinct simplicity of the formulation may often suggest approaches which might not be evident in a classical approach. In this note homogeneous fractional integral operators and a homogeneous integral operator related to the Laplace transform are defined and some applications to nonhomogeneous differential equations are given. (Author).

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227497409> # The use of fractional integral operators for solving nonhomogeneous differential equations.
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "227497409" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1864858189#Place/ft_belvoir> ; # Ft. Belvoir
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/integral_transforms> ; # (Integral transforms
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/transformations_mathematics> ; # Transformations(mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/operators_mathematics> ; # Operators(mathematics))
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/differential_equations> ; # (Differential equations
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/series_mathematics> ; # Series(mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/efficiency> ; # Efficiency
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Thing/laplace_transformation> ; # LAPLACE TRANSFORMATION
   schema:about <http://experiment.worldcat.org/entity/work/data/1864858189#Topic/numerical_mathematics> ; # Numerical Mathematics
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/64089057> ; # T. P. Higgins
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1864858189#Organization/boeing_scientific_research_labs_seattle_wash_mathematics_research_lab> ; # BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
   schema:datePublished "DEC 1967" ;
   schema:datePublished "1967" ;
   schema:description "Although results using fractional integral operators can always be obtained by other methods, the succinct simplicity of the formulation may often suggest approaches which might not be evident in a classical approach. In this note homogeneous fractional integral operators and a homogeneous integral operator related to the Laplace transform are defined and some applications to nonhomogeneous differential equations are given. (Author)."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1864858189> ;
   schema:inLanguage "en" ;
   schema:name "The use of fractional integral operators for solving nonhomogeneous differential equations."@en ;
   schema:productID "227497409" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/227497409#PublicationEvent/ft_belvoirdefense_technical_information_centerdec_1967> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1864858189#Agent/defense_technical_information_center> ; # Defense Technical Information Center
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/227497409> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1864858189#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
   schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Organization/boeing_scientific_research_labs_seattle_wash_mathematics_research_lab> # BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
    a schema:Organization ;
   schema:name "BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB." ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Thing/laplace_transformation> # LAPLACE TRANSFORMATION
    a schema:Thing ;
   schema:name "LAPLACE TRANSFORMATION" ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/differential_equations> # (Differential equations
    a schema:Intangible ;
   schema:name "(Differential equations"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/integral_transforms> # (Integral transforms
    a schema:Intangible ;
   schema:name "(Integral transforms"@en ;
   schema:name "Integral transforms)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/numerical_mathematics> # Numerical Mathematics
    a schema:Intangible ;
   schema:name "Numerical Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/operators_mathematics> # Operators(mathematics))
    a schema:Intangible ;
   schema:name "Operators(mathematics))"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/series_mathematics> # Series(mathematics)
    a schema:Intangible ;
   schema:name "Series(mathematics)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1864858189#Topic/transformations_mathematics> # Transformations(mathematics)
    a schema:Intangible ;
   schema:name "Transformations(mathematics)"@en ;
    .

<http://viaf.org/viaf/64089057> # T. P. Higgins
    a schema:Person ;
   schema:familyName "Higgins" ;
   schema:givenName "T. P." ;
   schema:name "T. P. Higgins" ;
    .

<http://www.worldcat.org/title/-/oclc/227497409>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/227497409> ; # The use of fractional integral operators for solving nonhomogeneous differential equations.
   schema:dateModified "2017-01-20" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.