přejít na obsah
Viro's patchworking disproves Ragsdale's conjecture Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Viro's patchworking disproves Ragsdale's conjecture

Autor Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Vydavatel: [Minneapolis] : The Geometry Center, ©1997.
Vydání/formát:   VHS video : VHS tape : Animation   Obrazový materiál : English
Databáze:WorldCat
Shrnutí:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Osoba: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
Typ materiálu: Animation, Videorecording
Typ dokumentu: Obrazový materiál
Všichni autoři/tvůrci: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
OCLC číslo: 63886547
Popis: 1 videocassette (8 min.) : sd., col. ; 1/2 in. + notes (1 sheet)
Podrobnosti: VHS.
Odpovědnost: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

Anotace:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/63886547>
library:oclcnum"63886547"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/63886547>
rdf:typej.2:VHS
rdf:typeschema:Movie
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:description"This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."
schema:exampleOfWork<http://worldcat.org/entity/work/id/47940530>
schema:inLanguage"en"
schema:name"Viro's patchworking disproves Ragsdale's conjecture"
schema:publisher
schema:url

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.