passa ai contenuti
Viro's patchworking disproves Ragsdale's conjecture Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Viro's patchworking disproves Ragsdale's conjecture

Autore: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Editore: [Minneapolis] : The Geometry Center, ©1997.
Edizione/Formato:   Video VHS : VHS tape : Animation   Materiale visivo : English
Banca dati:WorldCat
Sommario:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Persona incaricata: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
Tipo materiale: Animation, Videorecording
Tipo documento: Materiale visivo
Tutti gli autori / Collaboratori: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Numero OCLC: 63886547
Descrizione: 1 videocassette (8 min.) : sd., col. ; 1/2 in. + notes (1 sheet)
Dettagli: VHS.
Responsabilità: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

Abstract:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.

Documenti simili

Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/63886547>
library:oclcnum"63886547"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Movie
rdf:typebgn:VHS
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:description"This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."
schema:exampleOfWork<http://worldcat.org/entity/work/id/47940530>
schema:inLanguage"en"
schema:name"Viro's patchworking disproves Ragsdale's conjecture"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.