doorgaan naar inhoud
Viro's patchworking disproves Ragsdale's conjecture Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Viro's patchworking disproves Ragsdale's conjecture

Auteur: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Uitgever: [Minneapolis] : The Geometry Center, ©1997.
Editie/Formaat:   VHS-video : VHS-band : Animatie   Visueel materiaal : Engels
Database:WorldCat
Samenvatting:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genoemd persoon: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
Genre: Animatie, Video-opname
Soort document: Visueel materiaal
Alle auteurs / medewerkers: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
OCLC-nummer: 63886547
Beschrijving: 1 videocassette (8 min.) : sd., col. ; 1/2 in. + notes (1 sheet)
Details: VHS.
Verantwoordelijkheid: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

Fragment:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/63886547>
library:oclcnum"63886547"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Movie
rdf:typebgn:VHS
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:description"This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."
schema:exampleOfWork<http://worldcat.org/entity/work/id/47940530>
schema:inLanguage"en"
schema:name"Viro's patchworking disproves Ragsdale's conjecture"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.