pular para conteúdo
Viro's patchworking disproves Ragsdale's conjecture Ver prévia deste item
FecharVer prévia deste item
Checando...

Viro's patchworking disproves Ragsdale's conjecture

Autor: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Editora: [Minneapolis] : The Geometry Center, ©1997.
Edição/Formato   Vídeo em VHS : Fita VHS : Animação   Material visual : Inglês
Base de Dados:WorldCat
Resumo:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Pessoa Denominada: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
Tipo de Material: Animação, Gravação de vídeo
Tipo de Documento: Material visual
Todos os Autores / Contribuintes: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Número OCLC: 63886547
Descrição: 1 videocassette (8 min.) : sd., col. ; 1/2 in. + notes (1 sheet)
Detalhes: VHS.
Responsabilidade: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

Resumo:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/63886547>
library:oclcnum"63886547"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/63886547>
rdf:typej.2:VHS
rdf:typeschema:Movie
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:description"This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."
schema:exampleOfWork<http://worldcat.org/entity/work/id/47940530>
schema:inLanguage"en"
schema:name"Viro's patchworking disproves Ragsdale's conjecture"
schema:publisher
schema:url

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.