跳到内容
Viro's patchworking disproves Ragsdale's conjecture 预览资料
关闭预览资料
正在查...

Viro's patchworking disproves Ragsdale's conjecture

著者: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
出版商: [Minneapolis] : The Geometry Center, ©1997.
版本/格式:   VHS视频 : VHS录像带 : 动画   视觉资料 : 英语
数据库:WorldCat
提要:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

提及的人: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
材料类型: 动画, 录像
文件类型: 视觉资料
所有的著者/提供者: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
OCLC号码: 63886547
描述: 1 videocassette (8 min.) : sd., col. ; 1/2 in. + notes (1 sheet)
详述: VHS.
责任: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

摘要:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/63886547>
library:oclcnum"63886547"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Movie
rdf:typebgn:VHS
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:description"This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."
schema:exampleOfWork<http://worldcat.org/entity/work/id/47940530>
schema:inLanguage"en"
schema:name"Viro's patchworking disproves Ragsdale's conjecture"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.