skip to content
Viro's patchworking disproves Ragsdale's conjecture Preview this item
ClosePreview this item
Checking...

Viro's patchworking disproves Ragsdale's conjecture

Author: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
Publisher: [Minneapolis] : The Geometry Center, ©1997.
Edition/Format:   VHS video : VHS tape : Animation   Visual material : English
Summary:
This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Named Person: O I︠A︡ Viro; Virginia Ragsdale; Virginia Ragsdale; O I︠A︡ Viro
Material Type: Animation, Videorecording
Document Type: Visual material
All Authors / Contributors: Jesús A De Loera; Frederick J Wicklin; University of Minnesota. Geometry Center.
OCLC Number: 63886547
Description: 1 videocassette (8 min.) : sound, color ; 1/2 in. + notes (1 sheet)
Details: VHS.
Responsibility: written and produced by Jesús A. De Loera and Frederick J. Wicklin.

Abstract:

This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/63886547> # Viro's patchworking disproves Ragsdale's conjecture
    a schema:CreativeWork, schema:Movie, pto:Animation, bgn:VHS ;
   library:oclcnum "63886547" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/47940530#Place/minneapolis> ; # Minneapolis
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mnu> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/47940530#Person/viro_o_ia_1948> ; # O I︠A︡ Viro
   schema:about <http://id.worldcat.org/fast/885451> ; # Curves, Algebraic
   schema:about <http://viaf.org/viaf/72036265> ; # O I︠A︡ Viro
   schema:about <http://experiment.worldcat.org/entity/work/data/47940530#Person/ragsdale_virginia> ; # Virginia Ragsdale
   schema:contributor <http://viaf.org/viaf/7302199> ; # Jesús A. De Loera
   schema:contributor <http://viaf.org/viaf/9757312> ; # Frederick J. Wicklin
   schema:contributor <http://viaf.org/viaf/150550613> ; # University of Minnesota. Geometry Center.
   schema:copyrightYear "1997" ;
   schema:datePublished "1997" ;
   schema:description "This animated video explains new developments concerning Hilbert's sixteenth problem, still unsolved, dealing with ways nonsingular level sets of polynomials can be arranged in the projected plane. Mathematician Virginia Ragsdale had conjectured an upper bound on the number of topological circles resulting from algebraic curves of degree 2k. After almost 90 years, Oleg Viro has proposed a new combinatorial method for constructing curves, known as patchworking, which has shown counter-examples to the Ragsdale Conjecture."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/47940530> ;
   schema:inLanguage "en" ;
   schema:name "Viro's patchworking disproves Ragsdale's conjecture"@en ;
   schema:productID "63886547" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/63886547#PublicationEvent/minneapolis_the_geometry_center_1997> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/47940530#Agent/the_geometry_center> ; # The Geometry Center
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/63886547> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/47940530#Agent/the_geometry_center> # The Geometry Center
    a bgn:Agent ;
   schema:name "The Geometry Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/47940530#Person/ragsdale_virginia> # Virginia Ragsdale
    a schema:Person ;
   schema:familyName "Ragsdale" ;
   schema:givenName "Virginia" ;
   schema:name "Virginia Ragsdale" ;
    .

<http://experiment.worldcat.org/entity/work/data/47940530#Person/viro_o_ia_1948> # O I︠A︡ Viro
    a schema:Person ;
   schema:birthDate "1948" ;
   schema:familyName "Viro" ;
   schema:givenName "O. I︠A︡." ;
   schema:name "O I︠A︡ Viro" ;
    .

<http://id.worldcat.org/fast/885451> # Curves, Algebraic
    a schema:Intangible ;
   schema:name "Curves, Algebraic"@en ;
    .

<http://viaf.org/viaf/150550613> # University of Minnesota. Geometry Center.
    a schema:Organization ;
   schema:name "University of Minnesota. Geometry Center." ;
    .

<http://viaf.org/viaf/72036265> # O I︠A︡ Viro
    a schema:Person ;
   schema:birthDate "1948" ;
   schema:familyName "Viro" ;
   schema:givenName "O. I︠A︡." ;
   schema:name "O I︠A︡ Viro" ;
    .

<http://viaf.org/viaf/7302199> # Jesús A. De Loera
    a schema:Person ;
   schema:birthDate "1966" ;
   schema:familyName "De Loera" ;
   schema:givenName "Jesús A." ;
   schema:name "Jesús A. De Loera" ;
    .

<http://viaf.org/viaf/9757312> # Frederick J. Wicklin
    a schema:Person ;
   schema:familyName "Wicklin" ;
   schema:givenName "Frederick J." ;
   schema:name "Frederick J. Wicklin" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.