skip to content
Wavelet methods for elliptic partial differential equations Preview this item
ClosePreview this item
Checking...

Wavelet methods for elliptic partial differential equations

Author: Karsten Urban
Publisher: Oxford, UK : Oxford University Press, 2009.
Series: Numerical mathematics and scientific computation.; Oxford science publications.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
A text based on the author's course that introduces graduates to the basics of wavelet methods for partial differential equations and describes the construction and analysis of adaptive wavelet methods.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Urban, Karsten.
Wavelet methods for elliptic partial differential equations.
Oxford ; New York : Oxford University Press, 2009
(OCoLC)187292855
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Karsten Urban
ISBN: 0191523526 9780191523526
OCLC Number: 300701802
Description: 1 online resource (xxvii, 480 pages) : illustrations.
Contents: Contents; List of Algorithms; Preface; Acknowledgements; List of Figures; List of Tables; 1 Introduction; 2 Multiscale approximation and multiresolution; 3 Elliptic boundary value problems; 4 Multiresolution Galerkin methods; 5 Wavelets; 6 Wavelet-Galerkin methods; 7 Adaptive wavelet methods; 8 Wavelets on general domains; 9 Some applications; A: Sobolev spaces and variational formulations; B: Besov spaces; C: Basic iterations; References; Index.
Series Title: Numerical mathematics and scientific computation.; Oxford science publications.
Responsibility: Karsten Urban.
More information:

Abstract:

A text based on the author's course that introduces graduates to the basics of wavelet methods for partial differential equations and describes the construction and analysis of adaptive wavelet  Read more...

Reviews

Editorial reviews

Publisher Synopsis

"A nice and readable introduction to wavelet methods for elliptic PDEs. The book is very useful both for teaching and for research."--Mathematical Reviews

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/300701802> # Wavelet methods for elliptic partial differential equations
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "300701802" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/119179811#Place/oxford_uk> ; # Oxford, UK
    schema:about <http://dewey.info/class/515.3533/e22/> ;
    schema:about <http://id.worldcat.org/fast/1172896> ; # Wavelets (Mathematics)
    schema:about <http://id.worldcat.org/fast/893458> ; # Differential equations, Elliptic
    schema:about <http://experiment.worldcat.org/entity/work/data/119179811#Topic/mathematics_differential_equations_partial> ; # MATHEMATICS--Differential Equations--Partial
    schema:author <http://viaf.org/viaf/15410758> ; # Karsten Urban
    schema:bookFormat schema:EBook ;
    schema:datePublished "2009" ;
    schema:description "A text based on the author's course that introduces graduates to the basics of wavelet methods for partial differential equations and describes the construction and analysis of adaptive wavelet methods."@en ;
    schema:description "Contents; List of Algorithms; Preface; Acknowledgements; List of Figures; List of Tables; 1 Introduction; 2 Multiscale approximation and multiresolution; 3 Elliptic boundary value problems; 4 Multiresolution Galerkin methods; 5 Wavelets; 6 Wavelet-Galerkin methods; 7 Adaptive wavelet methods; 8 Wavelets on general domains; 9 Some applications; A: Sobolev spaces and variational formulations; B: Besov spaces; C: Basic iterations; References; Index."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/119179811> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/119179811#Series/oxford_science_publications> ; # Oxford science publications.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/119179811#Series/numerical_mathematics_and_scientific_computation> ; # Numerical mathematics and scientific computation.
    schema:isSimilarTo <http://www.worldcat.org/oclc/187292855> ;
    schema:name "Wavelet methods for elliptic partial differential equations"@en ;
    schema:productID "300701802" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/300701802#PublicationEvent/oxford_uk_oxford_university_press_2009> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/119179811#Agent/oxford_university_press> ; # Oxford University Press
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259894> ;
    schema:url <http://www.myilibrary.com?id=193070&ref=toc> ;
    schema:url <http://www.myilibrary.com?id=193070> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=416037> ;
    schema:url <http://site.ebrary.com/id/10273013> ;
    schema:url <http://dx.doi.org/10.1093/acprof:oso/9780198526056.001.0001> ;
    schema:workExample <http://worldcat.org/isbn/9780191523526> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/300701802> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/119179811#Agent/oxford_university_press> # Oxford University Press
    a bgn:Agent ;
    schema:name "Oxford University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/119179811#Series/numerical_mathematics_and_scientific_computation> # Numerical mathematics and scientific computation.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/300701802> ; # Wavelet methods for elliptic partial differential equations
    schema:name "Numerical mathematics and scientific computation." ;
    schema:name "Numerical mathematics and scientific computation" ;
    .

<http://experiment.worldcat.org/entity/work/data/119179811#Series/oxford_science_publications> # Oxford science publications.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/300701802> ; # Wavelet methods for elliptic partial differential equations
    schema:name "Oxford science publications." ;
    schema:name "Oxford science publications" ;
    .

<http://experiment.worldcat.org/entity/work/data/119179811#Topic/mathematics_differential_equations_partial> # MATHEMATICS--Differential Equations--Partial
    a schema:Intangible ;
    schema:name "MATHEMATICS--Differential Equations--Partial"@en ;
    .

<http://id.worldcat.org/fast/1172896> # Wavelets (Mathematics)
    a schema:Intangible ;
    schema:name "Wavelets (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/893458> # Differential equations, Elliptic
    a schema:Intangible ;
    schema:name "Differential equations, Elliptic"@en ;
    .

<http://viaf.org/viaf/15410758> # Karsten Urban
    a schema:Person ;
    schema:familyName "Urban" ;
    schema:givenName "Karsten" ;
    schema:name "Karsten Urban" ;
    .

<http://worldcat.org/isbn/9780191523526>
    a schema:ProductModel ;
    schema:isbn "0191523526" ;
    schema:isbn "9780191523526" ;
    .

<http://www.worldcat.org/oclc/187292855>
    a schema:CreativeWork ;
    rdfs:label "Wavelet methods for elliptic partial differential equations." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/300701802> ; # Wavelet methods for elliptic partial differential equations
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.