skip to content
Wavelets made easy Preview this item
ClosePreview this item
Checking...

Wavelets made easy

Author: Yves Nievergelt
Publisher: Boston, Mass. [u.a.] : Birkhäuser, 1999.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data.

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Lehrbuch
Document Type: Book
All Authors / Contributors: Yves Nievergelt
ISBN: 0817640614 9780817640613 3764340614 9783764340612
OCLC Number: 245724528
Notes: Literaturverz. S. 291 - 293.
Description: XI, 297 S : graph. Darst ; 25 cm
Contents: A Algorithms for Wavelet Transforms.- 1 Haar's Simple Wavelets.- 1.0 Introduction.- 1.1 Simple Approximation.- 1.2 Approximation with Simple Wavelets.- 1.2.1 The Basic Haar Wavelet Transform.- 1.2.2 Significance of the Basic Haar Wavelet Transform.- 1.2.3 Shifts and Dilations of the Basic Haar Transform.- 1.3 The Ordered Fast Haar Wavelet Transform.- 1.3.1 Initialization.- 1.3.2 The Ordered Fast Haar Wavelet Transform.- 1.4 The In-Place Fast Haar Wavelet Transform.- 1.4.1 In-Place Basic Sweep.- 1.4.2 The In-Place Fast Haar Wavelet Transform.- 1.5 The In-Place Fast Inverse Haar Wavelet Transform.- 1.6 Examples.- 1.6.1 Creek Water Temperature Analysis.- 1.6.2 Financial Stock Index Event Detection.- 2 Multidimensional Wavelets and Applications.- 2.0 Introduction.- 2.1 Two-Dimensional Haar Wavelets.- 2.1.1 Two-Dimensional Approximation with Step Functions.- 2.1.2 Tensor Products of Functions.- 2.1.3 The Basic Two-Dimensional Haar Wavelet Transform.- 2.1.4 Two-Dimensional Fast Haar Wavelet Transform.- 2.2 Applications of Wavelets.- 2.2.1 Noise Reduction.- 2.2.2 Data Compression.- 2.2.3 Edge Detection.- 2.3 Computational Notes.- 2.3.1 Fast Reconstruction of Single Values.- 2.3.2 Operation Count.- 2.4 Examples.- 2.4.1 Creek Water Temperature Compression.- 2.4.2 Financial Stock Index Image Compression.- 2.4.3 Two-Dimensional Diffusion Analysis.- 2.4.4 Three-Dimensional Diffusion Analysis.- 3 Algorithms for Daubechies Wavelets.- 3.0 Introduction.- 3.1 Calculation of Daubechies Wavelets.- 3.2 Approximation of Samples with Daubechies Wavelets.- 3.2.1 Approximate Interpolation.- 3.2.2 Approximate Averages.- 3.3 Extensions to Alleviate Edge Effects.- 3.3.1 Zigzag Edge Effects from Extensions by Zeros.- 3.3.2 Medium Edge Effects from Mirror Reflections.- 3.3.3 Small Edge Effects from Smooth Periodic Extensions.- 3.4 The Fast Daubechies Wavelet Transform.- 3.5 The Fast Inverse Daubechies Wavelet Transform.- 3.6 Multidimensional Daubechies Wavelet Transforms.- 3.7 Examples.- 3.7.1 Hangman Creek Water Temperature Analysis.- 3.7.2 Financial Stock Index Image Compression.- B Basic Fourier Analysis.- 4 Inner Products and Orthogonal Projections.- 4.0 Introduction.- 4.1 Linear Spaces.- 4.1.1 Number Fields.- 4.1.2 Linear Spaces.- 4.1.3 Linear Maps.- 4.2 Projections.- 4.2.1 Inner Products.- 4.2.2 Gram-Schmidt Orthogonalization.- 4.2.3 Orthogonal Projections.- 4.3 Applications of Orthogonal Projections.- 4.3.1 Application to Three-Dimensional Computer Graphics.- 4.3.2 Application to Ordinary Least-Squares Regression.- 4.3.3 Application to the Computation of Functions.- 4.3.4 Applications to Wavelets.- 5 Discrete and Fast Fourier Transforms.- 5.0 Introduction.- 5.1 The Discrete Fourier Transform (DFT).- 5.1.1 Definition and Inversion.- 5.1.2 Unitary Operators.- 5.2 The Fast Fourier Transform (FFT).- 5.2.1 The Forward Fast Fourier Transform.- 5.2.2 The Inverse Fast Fourier Transform.- 5.2.3 Interpolation by the Inverse Fast Fourier Transform.- 5.2.4 Bit Reversal.- 5.3 Applications of the Fast Fourier Transform.- 5.3.1 Noise Reduction Through the Fast Fourier Transform.- 5.3.2 Convolution and Fast Multiplication.- 5.4 Multidimensional Discrete and Fast Fourier Transforms.- 6 Fourier Series for Periodic Functions.- 6.0 Introduction.- 6.1 Fourier Series.- 6.1.1 Orthonormal Complex Trigonometric Functions.- 6.1.2 Definition and Examples of Fourier Series.- 6.1.3 Relation Between Series and Discrete Transforms.- 6.1.4 Multidimensional Fourier Series.- 6.2 Convergence and Inversion of Fourier Series.- 6.2.1 The Gibbs-Wilbraham Phenomenon.- 6.2.2 Piecewise Continuous Functions.- 6.2.3 Convergence and Inversion of Fourier Series.- 6.2.4 Convolutions and Dirac's "Function" ?.- 6.2.5 Uniform Convergence of Fourier Series.- 6.3 Periodic Functions.- C Computation and Design of Wavelets.- 7 Fourier Transforms on the Line and in Space.- 7.0 Introduction.- 7.1 The Fourier Transform.- 7.1.1 Definition and Examples of the Fourier Transform.- 7.2 Convolutions and Inversion of the Fourier Transform.- 7.3 Approximate Identities.- 7.3.1 Weight Functions.- 7.3.2 Approximate Identities.- 7.3.3 Dirac Delta (?) Function.- 7.4 Further Features of the Fourier Transform.- 7.4.1 Algebraic Features of the Fourier Transform.- 7.4.2 Metric Features of the Fourier Transform.- 7.4.3 Uniform Continuity of Fourier Transforms.- 7.5 The Fourier Transform with Several Variables.- 7.6 Applications of Fourier Analysis.- 7.6.1 Shannon's Sampling Theorem.- 7.6.2 Heisenberg's Uncertainty Principle.- 8 Daubechies Wavelets Design.- 8.0 Introduction.- 8.1 Existence, Uniqueness, and Construction.- 8.1.1 The Recursion Operator and Its Adjoint.- 8.1.2 The Fourier Transform of the Recursion Operator.- 8.1.3 Convergence of Iterations of the Recursion Operator.- 8.2 Orthogonality of Daubechies Wavelets.- 8.3 Mallat's Fast Wavelet Algorithm.- 9 Signal Representations with Wavelets.- 9.0 Introduction.- 9.1 Computational Features of Daubechies Wavelets.- 9.1.1 Initial Values of Daubechies' Scaling Function.- 9.1.2 Computational Features of Daubechies' Function.- 9.1.3 Exact Representation of Polynomials by Wavelets.- 9.2 Accuracy of Signal Approximation by Wavelets.- 9.2.1 Accuracy of Taylor Polynomials.- 9.2.2 Accuracy of Signal Representations by Wavelets.- 9.2.3 Approximate Interpolation by Daubechies' Function.- D Directories.- Acknowledgments.- Collection of Symbols.
Responsibility: Yves Nievergelt.

Reviews

Editorial reviews

Publisher Synopsis

"The book explains in a nice way the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and synthesis of signals, images, and other arrays of Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/245724528> # Wavelets made easy
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "245724528" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/20330361#Place/boston_mass_u_a> ; # Boston, Mass. u.a.
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/20330361#Topic/wavelets_mathematics> ; # Wavelets (Mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/20330361#Topic/wavelet> ; # Wavelet
   schema:about <http://dewey.info/class/515.2433/> ;
   schema:bookFormat bgn:PrintBook ;
   schema:creator <http://viaf.org/viaf/27920512> ; # Yves Nievergelt
   schema:datePublished "1999" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/20330361> ;
   schema:inLanguage "en" ;
   schema:name "Wavelets made easy" ;
   schema:productID "245724528" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/245724528#PublicationEvent/boston_mass_u_a_birkhauser_1999> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/20330361#Agent/birkhauser> ; # Birkhäuser
   schema:workExample <http://worldcat.org/isbn/9780817640613> ;
   schema:workExample <http://worldcat.org/isbn/9783764340612> ;
   umbel:isLike <http://d-nb.info/956684475> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/245724528> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/20330361#Place/boston_mass_u_a> # Boston, Mass. u.a.
    a schema:Place ;
   schema:name "Boston, Mass. u.a." ;
    .

<http://experiment.worldcat.org/entity/work/data/20330361#Topic/wavelets_mathematics> # Wavelets (Mathematics)
    a schema:Intangible ;
   schema:name "Wavelets (Mathematics)" ;
    .

<http://viaf.org/viaf/27920512> # Yves Nievergelt
    a schema:Person ;
   schema:familyName "Nievergelt" ;
   schema:givenName "Yves" ;
   schema:name "Yves Nievergelt" ;
    .

<http://worldcat.org/isbn/9780817640613>
    a schema:ProductModel ;
   schema:isbn "0817640614" ;
   schema:isbn "9780817640613" ;
    .

<http://worldcat.org/isbn/9783764340612>
    a schema:ProductModel ;
   schema:isbn "3764340614" ;
   schema:isbn "9783764340612" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.