Victorian Popularizers of Science

Designing Nature for New Audiences

The University of Chicago Press

Copyright © 2007 The University of Chicago
All right reserved.

ISBN: 978-0-226-48118-0

Chapter One

Historians, Popularizers, and the Victorian Scene

SIGNS of a remarkable change in attitude toward science were evident to many mid-nineteenth-century British observers. They had only to contemplate the popularity of the Great Exhibition of the Works of Industry of All Nations, held in London in 1851. The Exhibition was housed in an immense glass and iron building of unique architectural design, earning it the nickname "Crystal Palace." Never before had an industrial exhibition drawn such huge crowds. The aspiring young biologist Thomas Henry (T. H.) Huxley wrote to his future wife in 1851 that visitors to the Crystal Palace approached it with awe and reverence, as if they were on a sacred pilgrimage to a holy shrine. "The great Temple of England at present," Huxley told her, "is the Crystal Palace-58,000 people worship there every day. They come up to it as the Jews came to Jerusalem at the time of the Jubilee." Contemporary observers could also consider the natural history crazes of the 1850s as another indicator of a growing interest in science. Just two years after the Exhibition opened, the naturalist and popularizer Philip Henry Gosse predicted in his Naturalist's Rambles on the Devonshire Coast (1853) that the marine aquarium would soon be found in many Victorian parlors. Almost overnight the aquarium became a national craze, and members of the British middle class traveled to the coast to comb the beaches for specimens. At the same time, fern collecting became a widespread fad.

The Victorian fascination with aquaria and ferns was followed by an intense curiosity in dinosaurs. When the Crystal Palace Company relocated the Great Exhibition as a permanent site in Sydenham, just south of London, a new exhibition of extinct reptiles and mammals became one of the most popular attractions. The public was treated to the first life-sized restorations of the Ichthyosaurus, the Plesiosaurus, pterodactyls, the Megalosaurus, and the Iguanodon, built by the natural history illustrator Benjamin Waterhouse Hawkins in collaboration with the anatomist Richard Owen. Opening on June 10, 1854, over a million people a year for the next fifty years saw these full-scale models. Dinosaurs became part of the popular imagination. They appeared regularly in the pages of Punch magazine and fought in Jules Verne's Journey to the Centre of the Earth (1864). In addition to the aquaria, fern, and dinosaur crazes, in the early 1860s the British public became interested in gorillas, in part due to curiosity about the relationship between humans and apes in light of Darwin's theory of evolution and because of the activities of the explorer Paul du Chaillu. In 1861 du Chaillu toured England with his collection of decapitated ape heads. His extremely popular book, Explorations and Adventures in Equatorial Africa, appeared in the same year. It contained lurid tales of du Chaillu's experiences hunting aggressive gorillas. Patronized by Richard Owen, du Chaillu's gorillas became entangled in the celebrated debate between Owen and Huxley on the anatomy of human and ape brains. The public's curiosity about apes and evolution was piqued when the controversy was lampooned in Punch and immortalized in Kingsley's Water Babies (1862). Why was there such a sudden upsurge of interest in all things scientific? As historian David Allen has pointed out, one reason was the development of a public for science largely composed of a new generation of middle-class consumers. In contrast to the 1840s, a period of economic depression in Britain, the following decade was one of prosperity. During the 1850s and 60s Britain was the leading commercial, industrial, and imperial power in the world. More people had more money to spend on leisure activities. Science became fashionable and respectable within a broader spectrum of the populace, not just within the circles of the well to do.

Science continued to captivate the Victorians right up to the end of the century. They came into contact with science through witnessing the spread of dazzling new technologies, through encountering exotic animals and plants, and through experiencing heated controversies about the validity of novel theories. With its promise of continued progress through technological advancement, science sparked utopian visions of the future and seemed to offer the means by which British imperial aims could be accomplished. Cable telegraphy, for example, was one of the exciting, new technologies based on the electrical research of scientists such as William Thomson. Introduced in 1851 when the first successful undersea cable was laid across the English Channel, by the 1870s cables spanned the globe and transformed the nature of communications. From the beginning the worldwide cable industry was dominated by British capital and by British engineering expertise. Through its global cable system Britain could exercise direct control over its vast empire. Britain was a global center for the trade of specimens as well. Flora and fauna from across the empire were brought into London, some to be examined by British scientists, others to be displayed to the public in the London Zoo, the British Museum, or Kew Gardens. The Victorians were also excited by new scientific discoveries, such as Darwin's theory of natural selection, and became engrossed in debates over their validity. These controversies involved scientists like Huxley, John Tyndall, and Thomson, who were larger than life public figures. New scientific instruments seemed to open up hitherto unexplored worlds of nature. William Huggins's application of the spectroscope to astronomy, for example, which made it possible to ascertain the composition of distant heavenly bodies, in combination with more sophisticated photographic techniques, profoundly modified astronomy. As one contemporary observed, the adoption of the spectroscope and the camera had widened the borders of astronomy, "inviting it to undertake novel tasks, endowing it with previously undreamt-of powers. Realms of knowledge deemed inaccessible to human faculties have, as if at the touch of a magician's wand, been thrown open." Scientific knowledge seemed to offer the magical password-the "open sesame"-that unlocked the doors to exhilarating new worlds in the second half of the century.

But the fascination with science operated at an even deeper level. For some, it provided the basis for making sense of themselves and their place in the universe, either in conjunction with revised Christian notions or completely on its own terms. At the beginning of the nineteenth century the dominant, though by no means universally accepted, worldview was legitimized by Christian modes of thought. It was tied to the old order and reflected its pastoral, agrarian, and aristocratic nature. By the end of the century British society had been profoundly transformed, and the worldview of the old order no longer seemed relevant to many members of the intellectual elite, the middle classes, and the working classes. To those who were dissatisfied with traditional beliefs, scientific modes of thought seemed to offer the glue holding together a new worldview far more relevant for living in an urban, industrialized, and middle-class society.

In his "On the Advisableness of Improving Natural Knowledge" (1866), T. H. Huxley argued that the progress of scientific knowledge had resulted in the invention of great ships, railways, telegraphs, factories, and printing presses, "without which the whole fabric of modern English society would collapse into a mass of stagnant and starving pauperism." But Huxley pointed out that science was much more than "a sort of comfort-grinding machine." Only the "ideas" of science, he maintained, could "still spiritual cravings." Huxley believed that scientific progress had laid "the foundations of a new morality." In his review of the progress of science from 1836 to 1886, the popularizer Grant Allen asserted that as a result of the penetration of evolutionism into "all the studies which bear upon the divisions of human life," the "entire view of man and his nature has been reversed." Allen, like Huxley, believed that scientific developments dictated the adoption of a more secular perspective. Science, Allen declared, offered a coherent worldview through its synthesis of "all our concepts of the whole consistent system of nature, and [it] sets before our eyes the comprehensive and glorious idea of cosmos which is one and the same throughout, in sun and star and world and atom, in light and heat and life and mechanism, in herb and tree and man and animal, in body, soul, and spirit, mind and matter." The sciences therefore assumed tremendous significance in the second half of the nineteenth century as every theory, and every new discovery, seemed to contain huge implications for all facets of human life. Interpreting, and arguing over, the social, political, and religious meaning of scientific ideas became the focus of intellectual activity.

The vital importance of science did not end there for many Victorians. In addition to supplying the glue for a new worldview, it was also touted by its defenders as providing the best method for determining all truth. In her autobiography, Beatrice Webb, a disciple of Herbert Spencer who later married the leading Fabian socialist, recalled the "cult of science" that had inspired many mid-Victorians. One of its key tenets was "the current belief in the scientific method ... by means of which alone all mundane problems were to be solved." In order to be deemed intellectually legitimate, ideas and theories had to be determined through scientific method. Increasingly in the second half of the century, truths based on an appeal to sacred texts, to religious authorities, to an inner conscience (placed in humans by God), or to intuition of any kind were no longer seen as possessing intellectual credibility. Therefore those who could claim to speak on behalf of science gained immense cultural authority and intellectual prestige. They could assert that they spoke truthfully, and they could argue that they understood the broader significance of scientific ideas. Since the modern worldview was held together by scientific ideas, they essentially maintained that they could pronounce with authority on all issues. They could present themselves as the genuine arbiters of truth to the British public. But a modern, professionalized body of scientists was still in the making in the second half of the nineteenth century, which left a number of key questions to be answered. What, exactly, was proper scientific method? For that matter, what was science? Which groups could participate in the debates on these questions? The stakes were therefore quite high in the fight to be recognized as an intellectual who spoke on behalf of science.


How have historians dealt with this complex period in the development of science? Mapping out the topography of nineteenth-century British science has proven to be a challenging task. The map has already been redrafted several times over the course of the last forty-five years and remains a work in progress. Although the "externalism/internalism" debate from the 1960s to the 1980s led to a rejection of approaches drawn solely from intellectual history, even the more contextualist works that began to appear up to the end of the 1980s tended to focus on the transformation of the scientific elite as Britain evolved into a modern, industrialized nation. In the map drawn by such influential scholars as Frank Turner and Robert Young, the gentlemen of science, predominantly Oxbridge-educated Anglicans, controlled scientific sites during the first half of the century, and provided British society with a vision of culture and social order based on natural theology. In the second half of the century, Young and Turner argued, the towering peaks of scientific naturalism dominated the topography of British science. Middle-class Young Turks of science like Thomas Henry Huxley and John Tyndall, who came from outside the Oxbridge environment, began at the middle of the century to vie with the gentlemen of science for the leadership of the British scientific world. At the same time, they engaged in a debate with the Anglican clergy over who would provide the best leadership for modern British society.

Referred to as "scientific naturalists" or "evolutionary naturalists" by scholars, these men put forward new interpretations of nature, society, and humanity derived from the theories, methods, and categories of empirical science. Scientific naturalists were naturalistic in the sense that they ruled out recourse to causes not present in empirically observed nature, and they were scientific in that they interpreted nature in accordance with three major midcentury scientific theories, the atomic theory of matter, the conservation of energy, and evolution. This group of elite scientists gained coherence when some of its most active members formed the X Club. Starting in 1864, George Busk, Edward Frankland, Thomas Hirst, Joseph Dalton Hooker, Thomas Huxley, John Lubbock, Herbert Spencer, William Spottiswoode, and John Tyndall met for dinner on a monthly basis to strategize on how to accomplish their objectives. The activities and ideas of the evolutionary naturalists, including Charles Darwin, have provided historians with a focus for their map of the scientific landscape. Historians therefore concentrated on themes such as the Darwinian revolution, the secularization of science, and the professionalization of science. Even those scholars who wanted to explore new territory, whether it was in the area of science and literature or science and gender, tended to concentrate on the scientific elite.

The map of nineteenth-century British science that prominently featured scientific naturalism began to be redrafted at the end of the 1980s as a result of studies of groups who were not a part of the scientific elite. Adrian Desmond's Politics of Evolution (1989), a history of science "from below," was among the first to look beyond the establishment science offered by both the scientific gentry and Oxbridge clergy and the middle-class scientific naturalists who challenged their authority. Exploring the world of radical, lower-class evolutionists that existed in the secular anatomy schools and Nonconformist colleges of London in the 1830s, Desmond demonstrated that a thriving scientific culture existed outside, and in opposition to, the elite establishment. Since Desmond's groundbreaking book, the field of the history of nineteenth-century British science has gradually shifted its focus as scholars painstakingly drew a revised map that incorporated the presence of new groups while scaling down the exaggerated features of scientific naturalism.

As a result of Crosbie Smith's Science of Energy (1998), the dominance of scientific naturalism within the scientific elite has been reassessed. Effective opposition to scientific naturalism came from a group of scientists who from the 1850s to the 1870s constructed the science of energy. Like the scientific naturalists, they too had a reform program for the whole range of physical and even life sciences. Bearing the impress of Scottish presbyterianism, representing whig and progressive values, and linked to the industrialists of northern Britain, energy physics was founded by a "North British" group composed of Glasgow professor of natural philosophy William Thomson, Scottish natural philosophers James Clerk Maxwell and Peter Guthrie Tait, and the engineers Fleeming Jenkin and Macquorn Rankine. These men found the perceived anti-Christian materialism of the metropolitan scientific naturalists quite distasteful, and they were prepared to enter into an alliance with Cambridge Anglicans to undermine the authority of Huxley and his allies. They promoted a natural philosophy in harmony with, though not subservient to, Christian belief.


Excerpted from Victorian Popularizers of Scienceby BERNARD LIGHTMAN Copyright © 2007 by The University of Chicago. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.