WorldCat Identities

Lipowsky, R. (Reinhard) 1953-

Overview
Works: 50 works in 118 publications in 2 languages and 932 library holdings
Genres: Conference papers and proceedings 
Roles: Author, Editor, Other, Contributor
Publication Timeline
.
Most widely held works by R Lipowsky
Structure and dynamics of membranes( )

27 editions published between 1995 and 2005 in English and held by 426 WorldCat member libraries worldwide

The first volume of this handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateral phase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes.; Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes with polymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process of contact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned about the interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion
The structure and conformation of amphiphilic membranes : proceedings of the International Workshop on Amphiphilic Membranes, Jülich, Germany, September 16-18, 1991 by R Lipowsky( Book )

12 editions published in 1992 in English and held by 166 WorldCat member libraries worldwide

Membranes composed of amphiphilic molecules are highly flexible surfaces that determine the architecture of biological systems and provide a basic structural element for complex fluids such as microemulsions. Recently, a variety of new experimental methods such as X-ray scattering, neutron scattering, and atomic force microscopy have been used in order to study themolecular structure of these membranes. Their conformational behavior, on the other hand, is studied by optical and electron microscopy, which reveals that membranes in aqueous solution exhibit an amazing variety of different shapes. Several theoretical concepts are described suchas bending elasticity, curvature, and minimal surfaces in order to understand this polymorphism. These concepts are also useful to describe the behavior of membranes in complex fluids where they can build up hexagonal, lamellar, triply-periodic, cubic, and sponge phases. The contributions to this volume provide an up-to-date overview and describe thestate-of-the-art of this rapidly evolving field of research
Structure and dynamics of membranes by R Lipowsky( Book )

13 editions published between 1995 and 2004 in English and held by 35 WorldCat member libraries worldwide

The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids includin
Adhesion of vesicles and membranes by Udo Seifert( )

2 editions published in 2011 in English and held by 28 WorldCat member libraries worldwide

Integrable Hamiltonian Hierarchies : Spectral and Geometric Methods by R Beig( )

2 editions published in 2008 in English and held by 27 WorldCat member libraries worldwide

Das halb-unendliche Potts-Modell by R Lipowsky( Book )

4 editions published in 1982 in German and held by 25 WorldCat member libraries worldwide

Geometry and topology of biomolecular and functional nanomaterials : November 25-30, 2012, Boston, Massachusetts, USA by Materials Research Society( )

2 editions published in 2013 in English and held by 22 WorldCat member libraries worldwide

On the depolymerization of actin filaments by Thomas Niedermayer( )

1 edition published in 2012 in English and held by 17 WorldCat member libraries worldwide

Different modes of cooperative transport by molecular motors by Florian Berger( )

1 edition published in 2012 in English and held by 16 WorldCat member libraries worldwide

Cargo transport by molecular motors is ubiquitous in all eukaryotic cells and is typically driven cooperatively by several molecular motors, which may belong to one or several motor species like kinesin, dynein or myosin. These motor proteins transport cargos such as RNAs, protein complexes or organelles along filaments, from which they unbind after a finite run length. Understanding how these motors interact and how their movements are coordinated and regulated is a central and challenging problem in studies of intracellular transport. In this thesis, we describe a general theoretical framework for the analysis of such transport processes, which enables us to explain the behavior of intracellular cargos based on the transport properties of individual motors and their interactions. Motivated by recent in vitro experiments, we address two different modes of transport: unidirectional transport by two identical motors and cooperative transport by actively walking and passively diffusing motors. The case of cargo transport by two identical motors involves an elastic coupling between the motors that can reduce the motors' velocity and/or the binding time to the filament. We show that this elastic coupling leads, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive both by analytical calculations and by general time scale arguments, can be explored experimentally by varying the elastic coupling strength. In addition, using the time scale arguments, we explain why previous studies came to different conclusions about the effect and relevance of motor-motor interference. In this way, our theory provides a general and unifying framework for understanding the dynamical behavior of two elastically coupled molecular motors. The second mode of transport studied in this thesis is cargo transport by actively pulling and passively diffusing motors. Although these passive motors do not participate in active transport, they strongly enhance the overall cargo run length. When an active motor unbinds, the cargo is still tethered to the filament by the passive motors, giving the unbound motor the chance to rebind and continue its active walk. We develop a stochastic description for such cooperative behavior and explicitly derive the enhanced run length for a cargo transported by one actively pulling and one passively diffusing motor. We generalize our description to the case of several pulling and diffusing motors and find an exponential increase of the run length with the number of involved motors
Chemomechanical coupling and motor cycles of the molecular motor myosin V by Veronika Bierbaum( )

1 edition published in 2011 in English and held by 15 WorldCat member libraries worldwide

In the living cell, the organization of the complex internal structure relies to a large extent on molecular motors. Molecular motors are proteins that are able to convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Being about 10 to 100 nanometers in size, the molecules act on a length scale, for which thermal collisions have a considerable impact onto their motion. In this way, they constitute paradigmatic examples of thermodynamic machines out of equilibrium. This study develops a theoretical description for the energy conversion by the molecular motor myosin V, using many different aspects of theoretical physics. Myosin V has been studied extensively in both bulk and single molecule experiments. Its stepping velocity has been characterized as a function of external control parameters such as nucleotide concentration and applied forces. In addition, numerous kinetic rates involved in the enzymatic reaction of the molecule have been determined. For forces that exceed the stall force of the motor, myosin V exhibits a 'ratcheting' behaviour: For loads in the direction of forward stepping, the velocity depends on the concentration of ATP, while for backward loads there is no such influence. Based on the chemical states of the motor, we construct a general network theory that incorporates experimental observations about the stepping behaviour of myosin V. The motor's motion is captured through the network description supplemented by a Markov process to describe the motor dynamics. This approach has the advantage of directly addressing the chemical kinetics of the molecule, and treating the mechanical and chemical processes on equal grounds. We utilize constraints arising from nonequilibrium thermodynamics to determine motor parameters and demonstrate that the motor behaviour is governed by several chemomechanical motor cycles. In addition, we investigate the functional dependence of stepping rates on force by deducing the motor's response to external loads via an appropriate Fokker-Planck equation. For substall forces, the dominant pathway of the motor network is profoundly different from the one for superstall forces, which leads to a stepping behaviour that is in agreement with the experimental observations. The extension of our analysis to Markov processes with absorbing boundaries allows for the calculation of the motor's dwell time distributions. These reveal aspects of the coordination of the motor's heads and contain direct information about the backsteps of the motor. Our theory provides a unified description for the myosin V motor as studied in single motor experiments
Phase diagrams and shape transformations of toroidal vesicles by Frank Jülicher( )

1 edition published in 2011 in English and held by 14 WorldCat member libraries worldwide

Adhesion of membranes a theoretical perspective by R Lipowsky( )

1 edition published in 2011 in English and held by 14 WorldCat member libraries worldwide

Wetting by critical layers by R Lipowsky( )

1 edition published in 2011 in English and held by 14 WorldCat member libraries worldwide

Conformal degeneracy and conformal diffusion of vesicles by Frank Jülicher( )

1 edition published in 2011 in English and held by 14 WorldCat member libraries worldwide

Critical behavior of interfaces : wetting, surface melting and related phenomena by R Lipowsky( Book )

2 editions published in 1988 in German and English and held by 10 WorldCat member libraries worldwide

Theory of mRNA degradation by Carlus Deneke( )

1 edition published in 2012 in English and held by 10 WorldCat member libraries worldwide

One of the central themes of biology is to understand how individual cells achieve a high fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper functioning and its capability to proliferate. Therefore, complex regulatory mechanisms have evolved in order to render the expression of each gene dependent on the expression level of (all) other genes. Regulation can occur at different stages within the framework of the central dogma of molecular biology. One very effective and relatively direct mechanism concerns the regulation of the stability of mRNAs. All organisms have evolved diverse and powerful mechanisms to achieve this. In order to better comprehend the regulation in living cells, biochemists have studied specific degradation mechanisms in detail. In addition to that, modern high-throughput techniques allow to obtain quantitative data on a global scale by parallel analysis of the decay patterns of many different mRNAs from different genes. In previous studies, the interpretation of these mRNA decay experiments relied on a simple theoretical description based on an exponential decay. However, this does not account for the complexity of the responsible mechanisms and, as a consequence, the exponential decay is often not in agreement with the experimental decay patterns. We have developed an improved and more general theory of mRNA degradation which provides a general framework of mRNA expression and allows describing specific degradation mechanisms. We have made an attempt to provide detailed models for the regulation in different organisms. In the yeast S. cerevisiae, different degradation pathways are known to compete and furthermore most of them rely on the biochemical modification of mRNA molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically, i.e. it is governed by the initial cleavage within the coding region. In addition, it is often coupled to the level of maturity and the size of the polysome of an mRNA. Both for S. cerevisiae and E. coli, our descriptions lead to a considerable improvement of the interpretation of experimental data. The general outcome is that the degradation of mRNA must be described by an age-dependent degradation rate, which can be interpreted as a consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to address this much debated topic from a theoretical perspective. The improvements of the understanding of mRNA degradation can be readily applied to further comprehend the mRNA expression under different internal or environmental conditions such as after the induction of transcription or stress application. Also, the role of mRNA decay can be assessed in the context of translation and protein synthesis. The ultimate goal in understanding gene regulation mediated by mRNA stability will be to identify the relevance and biological function of different mechanisms. Once more quantitative data will become available, our description allows to elaborate the role of each mechanism by devising a suitable model
Generic and specific interactions( Book )

1 edition published in 1995 in English and held by 8 WorldCat member libraries worldwide

Structure and dynamics of membranes( )

in English and held by 7 WorldCat member libraries worldwide

The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateral phase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes with polymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process of contact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned about the interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion
From cells to vesicles( Book )

1 edition published in 1995 in English and held by 7 WorldCat member libraries worldwide

Handbook of biological physics( Book )

4 editions published between 1995 and 2005 in English and held by 5 WorldCat member libraries worldwide

 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.71 (from 0.62 for Structure ... to 0.94 for Theory of ...)

Structure and dynamics of membranes Structure and dynamics of membranes Structure and dynamics of membranes Handbook of biological physics
Covers
Structure and dynamics of membranesStructure and dynamics of membranesHandbook of biological physics
Alternative Names
Lipowsky, Reinhard 1953-

Reinhard Lipowsky deutscher Physiker

Reinhard Lipowsky Duits natuurkundige

Reinhard Lipowsky físico alemán

Reinhard Lipowsky German physicist

Reinhard Lipowsky tysk professor

Languages
English (75)

German (5)