The OCLC Research WorldCat Identities project is ending. The work provided valuable insight into how to mine bibliographic data for insight into the People and Organizations that create and serve as subjects library materials. The findings demonstrated the power of data mining over the world’s largest set of bibliographic metadata and highlighted the value of collaborative collective cataloging. The WorldCat Identities data has positively impacted OCLC’s work to build the WorldCat Entities application and the 150 million Person and Work descriptions accessible through it. This work will continue to build our entity ecosystem to support the future knowledge work of librarians.

The WorldCat Identities web application will be retired and shut down in the coming months and the data is no longer being updated. The most recent version of the data is from July of 2022. As OCLC continues to build out the WorldCat Entities ecosystem, please use it as a source for persistent Person identifiers. https://id.oclc.org/worldcat/entity

WorldCat Identities

Libri, Domenico (19..-....).

Overview
Works: 13 works in 17 publications in 2 languages and 20 library holdings
Roles: Thesis advisor, Opponent, Other, Author, Editor
Publication Timeline
.
Most widely held works by Domenico Libri
RNA quality control( Book )

2 editions published in 2008 in English and held by 4 WorldCat member libraries worldwide

CARACTERISATION DU GENE CODANT POUR L'ISOFORME BETA DE LA TROPOMYOSINE CHEZ LE POULET. ETUDE DE L'EPISSAGE ALTERNATIF by DOMENICO LIBRI( Book )

2 editions published in 1990 in French and held by 3 WorldCat member libraries worldwide

LE GENE CODANT POUR L'ISOFORME BETA DE LA TROPOMYOSINE A ETE ISOLE ET CARACTERISE. CE GENE EST SOUMIS A L'EPISSAGE ALTERNATIF. DEUX EXONS (6A ET 6B) SONT UTILISES DE FACON MUTUELLEMENT EXCLUSIVE ET SONT SPECIFIQUES RESPECTIVEMENT DES CELLULES NON MUSCULAIRES/MUSCLE LISSE ET DU MUSCLE SQUELETTIQUE. DES MINIGENES CONTENANT LES DEUX EXONS ALTERNATIFS ENTOURES PAR DEUX EXONS CONSTITUTIFS ONT ETE UTILISES POUR TRANSFECTER DES CELLULES MYOGENIQUES. L'ETUDE DU CONTROLE DE L'EPISSAGE A ETE POURSUIVI EN INTRODUISANT DES MUTATIONS DANS LA REGION DE L'EXON 6B. CELA NOUS A PERMIS D'IDENTIFIER UN CERTAIN NOMBRE D'ELEMENTS IMPLIQUES IN CIS DANS CETTE REGULATION, PARMIS LESQUELS LES SEQUENCES EXONIQUES ET INTRONIQUES, LA POSITION ANORMALE DU POINT DE BRANCHEMENT EN AMONT DE L'EXON 6B ET L'IMPLICATION PROBABLE DE STRUCTURES SECONDAIRES DU TRANSCRIT PRIMAIRE. DES FACTEURS AGISSANT IN TRANS, PROBABLEMENT SPECIFIQUES DU MUSCLE SQUELETTIQUE, SONT EGALEMENT IMPLIQUES DANS LA REGULATION
Identification et caractérisation du complexe PCC chez la levure S. cerevisiae by Elena Kisseleva-Romanova( Book )

2 editions published in 2004 in English and held by 2 WorldCat member libraries worldwide

Pour identifier de nouveaux facteurs d'épissage chez la levure S. cerevisiae, nous avons cherché des suppresseurs multicopies du phénotype cryosensible associé à la mutation U5A dans la particule U1 snRNA (U1-5A). Nous avons isolé des plasmides contenant une région intergénique portant une petite ORF cryptique (appelée PCC1 ) qui contient un intron avec un site d'épissage 5' non canonique. Nous avons montré que PCC1 n'est pas impliqué dans l'épissage, mais que l'épissage de son intron est le principal facteur limitant pour la croissance en présence de la mutation U1-5A. Puisque PCC1 est un gène quasi essentiel, nous avons généré et étudié le mutant thermosensible pcc1-4. Notre analyse a révélé des défauts dans le cycle cellulaire et dans la réponse à la phéromone. Nos données suggèrent que PCC1 est directement impliqué dans la transcription et affecte l'expression de certains gènes, ce qui détermine les phénotypes mutants de pcc1. Le complexe PCC contient trois protéines additionnelles: Kae1p, une métalloprotéase putative, Bud32p, une kinase et Pcc2p. De multiples interactions génétiques et physiques entre ces protéines et les phénotypes des mutants suggèrent que le complexe PCC agit comme une unité dans la cellule et que sa fonction est conservée chez les métazoaires. Nous suggérons que l'activité d'endopeptidase de Kae1p et que l'activité kinase de Bud32p sont les fonctions moléculaires qui déterminent le rôle du complexe PCC dans la transcription. Nous montrons des interactions génétiques entre PCC1 et des facteurs de modification de la chromatine, ce qui suggère que le complexe PCC pourrait influencer la transcription via une fonction de modification de la chromatine
Interactions entre transcription, maturation et dégradation des ARNs chez Saccharomyces cerevisiae by Mathieu Rougemaille( Book )

2 editions published in 2007 in English and held by 2 WorldCat member libraries worldwide

In budding yeast Saccharomyces cerevisiae, the exosome is a large complex with 3' to 5' exonuclease activity that has been implicated in numerous RNA processing and degradation events. We have shown that several transcripts mapping to intergenic regions are rapidly degraded in a wild type strain by the combined action of the exosome and a novel complex called TRAMP, whose catalytic subunit is a poly(A) polymerase. We proposed that degradation of these RNAs, called CUTs for Cryptic Unstable Transcripts, is a mechanism required to limit inappropriate transcription or to allow the occurrence of transcription without RNA production. We have also demonstrated that transcription termination of CUTs is triggered by specific RNA-binding proteins, Nrd1p and Nab3p, which direct nascent transcripts to exosome/TRAMP-mediated degradation. The THO complex and its associated RNA helicase Sub2p are involved in mRNA biogenesis and couple transcription to mRNA export. Mutations in any of these genes lead to exosome-dependent degradation and retention of mRNAs at or near the transcription site. We have shown that the TRAMP complex is involved in mRNA degradation but not in retention. Furthermore, we observed that, in THO/sub2 mutants, a DNA-interacting complex containing polyadenylation factors and components of the Nuclear Pore Complex cannot be resolved for further mRNA export. Accordingly, the THO/Sub2p complex would be involved in a remodeling step required to displace the polyadenylation complex and to engage productively the mRNA in the export pathway
Recherche des partenaires de l'ARN hélicase à boîte DEAD de levure Ded1 by Meriem Senissar( )

1 edition published in 2013 in French and held by 1 WorldCat member library worldwide

The budding yeast DEAD-box RNA helicase Ded1 is an essential yeast protein that is closely related to a subfamily of DEAD-box proteins that are involved in developmental and cell-cycle regulation. Ded1 is generally considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We have used IgG pulldown experiments, mass spectroscopy analyses, genetic experiments, saccharose gradients, in situ localizations, and enzymatic assays to show that Ded1 is a cap-associated factor that actively shuttles between the cytoplasm and the nucleus. We show that Ded1 physically interacts with various cap-associated factors and that its enzymatic activity is stimulated by these factors. By using various mutated proteins, we show that Ded1 is genetically linked to these factors. Ded1 comigrates with these factors on saccharose gradients, but the peak of Ded1 sediments slightly heavier than for the other factors, which suggests that Ded1 is predominately associated with a subset of the mRNPs. Finally, purification of the protein complexes associated with Ded1 and subsequent analysis by nanoLC-MS/MS indicates that Ded1 is associated with both nuclear and cytoplasmic mRNPs. Preliminary experiements showed that Ded1 can associate with other capped RNA. We conclude that Ded1 may function as a remodeling factor that is needed to form the different complexes associated with the different processing steps of the capped RNA
Étude intégrative du rôle de deux sous unités essentielles du Médiateur de la transcription dans la mise en place des complexes de pré-initiation by Thomas Eychenne( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

Transcription is the first step of gene expression. In eukaryotes, messenger RNA (mRNA) transcription is a highly regulated process. Transcription begins with the binding of a specific transcription factor on a DNA regulatory sequence. This enable the recruitment of co-activators, followed by general transcription factors (GTFs) and RNA polymerase II (Pol II) to form preinitiation complex (PIC). Mediator is a co-activator complex which is essential in this process. In yeast Saccharomyces cerevisiae, Mediator is composed of 25 subunits, among which 10 are essential for cell viability, organized into four distinct modules. The main role of this complex is to transmit regulatory signal to PIC components. Although Mediator has been the subject of a large numbers of studies, its complexity prevents the detailed understanding of how it acts in vivo. During my PhD, I focused my work on the study of the two essential subunits Med7 and Med10. Both of these subunits belong to the middle module, poorly studied so far. We obtained a collection of temperature-sensitive mutants of Med7 and Med10 in yeast S. cerevisiae. We used different molecular biology and functional genomics to characterize these mutants. The work on Med10 subunit enabled us to highlight in vivo a functional link between Mediator and TFIIB, one of the GTFs. Notably, we have shown a new contact between Med14 subunit and TFIIB. Our ChIP-seq analysis shows that Mediator middle module, and in particular Med10 subunits, is crucial for PIC assembly genome-wide. These data also permit us to show that Mediator influence PIC formation in relation to promoter architecture. Taken together, these results indicates that Mediator in crucial to orchestrate the incorporation of the different proteins into the PIC. This work permit us to improve our understanding of how functional interplay between Mediator, TFIIB, other GTFs, and the promoter architecture leads to gene-specific transcription
Genomewide analysis of road-block termination by Tito Candelli( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

La transcription de l'ADN en ARN constitue la première étape de l'expression d'un gène. Durant les dix dernières années, plusieurs études ont montré qu'environ 80-90% du génome est transcrit et que la transcription peut démarrer presque partout. Ce phénomène, connu sous le nom de transcription envahissante, représente une menace sérieuse contre l'expression correcte du génome car il peut interférer non seulement avec d'autres évènements de transcription mais également avec n'importe quel procédé impliquant l'ADN. Une terminaison sélective est donc un mécanisme de la plus haute importance pour la stabilité du génome et la correcte régulation de l'expression des gènes. Ici nous décrivons la terminaison road-block, un nouveau mécanisme de la terminaison par l'ARN polymerase II, qui a pour fonction de limiter la transcription envahissante et de limiter les conséquences d'une translecture au niveau des sites de terminaison canoniques de S.cerevisiae. Nous démontrons également que plusieurs facteurs de transcription peuvent entrainer cette terminaison et que certains sites génomiques y sont associés. De plus, nous explorons également la possibilité que ces terminaisons road-block puissent contribuer à rendre spécifiques les origines de réplication
Role of Nrd1p and Ctk1p in transcription termination and the metabolism of non-coding RNAs in Saccharomyces cerevisiae by Agnieszka Tudek( )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

L'ARN polymérase II (ARNPII) synthétise des ARNs codants et des ARNs non-codants (ARNnc) tels que les petits ARNs nucléaire/nucléolaire (sn/snoRNAs) et les CUTs (Cryptic Unstable Transcripts). Les CUTs sont des transcrits ubiquitaire souvent produits dans des régions codants dont la transcription peut interférer avec l'expression des gènes. Le contrôle de l'expression des ARNnc est essentiel et se fait aux niveaux de la terminaison de la transcription et la dégradation de l'ARN. Chez la levure Saccharomyces cerevisiae la terminaison de la transcription des gènes codants est effectuée par le Facteur de Clivage et de Polyadénylation (CPF), tandis que les ARNnc courts sont terminés par le complexe Nrd1p-Nab3p-Sen1p (NNS). La terminaison de la transcription est régulée par la phosphorylation du domaine C-terminal (CTD) de l'ARNPII composé de répétitions du motif Y1S2P3T4S5P6S7. Un niveau élevé de phosphorylation des résidus Ser5 près du promoteur permet l'activité du complexe NNS. La phosphorylation des résidus Ser2 est catalysée durant la transcription par la kinase Ctk1p et ces résidus sont reconnus par des éléments de la voie CPF. Mon travail de thèse a porté sur le mécanisme de terminaison de la transcription par le complexe NNS. La terminaison NNS dépend de la liaison de Nrd1p et Nab3p à des motifs dans l'ARN naissant et l'activité hélicase de Sen1p qui provoque le relarguage de la polymérase. La sous-unité Nrd1p interagit avec le domaine CTD de l'ARNPII phosphorylé sur Ser5 à travers son domaine CID (CTD-interaction domain). Le rôle du CID dans la terminaison à été proposé mais pas encore clairement démontré. En collaboration avec le groupe de P. Cramer (Université Louis-et-Maximilien de Munich Allemagne) nous avons mis en évidence que le CID est requis pour une terminaison efficace par la voie NNS et qu'il est important pour le recrutement de Nrd1p sur l'ARNPII. Le CID est aussi impliqué de manière directe ou indirecte dans l'interaction de Sen1p avec Nrd1p et Nab3p. En parallèle, avec le groupe de F. Holstege (Université Centre Médicale de Utrecht, Pays-Bas) nous avons montré que la phosphorylation en Ser2 du domaine CTD est requise pour une terminaison efficace par la voie NNS. De manière surprenante, ce résidu joue un rôle mineur dans la terminaison des ARNs codants effectuée par le complexe CPF. Les ARNs naissant terminés par le complexe NNS sont rapidement ciblés par le complexe nucléase exosome/Rrp6p et son cofacteur TRAMP ce qui mène a la maturation des sn/snoRNAs et la destruction des CUTs. Le complexe NNS interagit in vivo avec l'exosome et le complexe TRAMP, ce qui facilite la dégradation. Cependant les détails moléculaires de cette interaction restent inconnus. Nous avons montré que le domaine CID est requis et suffisant in vivo et in vitro pour l'interaction de Nrd1p avec la partie C-terminale de la sous-unité Trf4p du complexe TRAMP, que nous avons appelé NIM (Nrd1p-Interaction Motif). En collaboration avec le groupe de R. Stefl (Université Masaryk, République Tchèque) nous avons étudié par spectroscopie RMN la structure de ce motif NIM lié au CID. Nous avons mis en évidence que le CID lie le NIM et le CTD de façon similaire, et que ces interactions sont mutuellement exclusives. Le NIM se lie au CID environ 100 fois plus fortement qu'au CTD. Nous proposons que ces interactions alternatives de Nrd1p définissent des formes différentes du complexe NNS, une qui fonctionne dans la terminaison de la transcription, l'autre qui est active dans la dégradation. In vitro l'interaction du NIM avec le CID stimule l'activité poly(A)-polymérase de Trf4p ce qui suggère une fonction importante de cette interaction dans la dégradation. Nous montrons aussi que Rrp6p interagit directement avec Trf4p et cette liaison in vivo sert à recruter le complexe TRAMP à l'exosome Nous proposons que ce jeu serré d'interactions entre les complexes NNS, TRAMP et l'exosome/Rrp6p contribue à augmenter l'efficacité de dégradation de l'ARN in vivo
Characterization of the mechanisms of transcription termination by the helicase Sen1 by Zhong Han( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

La transcription cachée est un phénomène répandu aussi bien chez les eucaryotes que chez les procaryotes. Elle se caractérise par une production massive d'ARNs non-codants au niveau de régions non-annotées du génome et est potentiellement dangereuse pour la cellule car elle peut interférer avec l'expression normale des gènes. Chez S. cerevisiae, l'hélicase Sen1 induit la terminaison précoce de la transcription non-codante et joue ainsi un rôle clé dans le contrôle de la transcription cachée. Sen1 est très conservée et des mutations dans son homologue humain, senataxin (SETX), ont été associées à des maladies neurodégénératives. Malgré de nombreuses recherches menées sur ces protéines, leurs propriétés biochimiques ainsi que leurs mécanismes d'action restent peu connus. Durant ma thèse, j'ai étudié le mécanisme de terminaison par Sen1.Premièrement, j'ai caractérisé les activités biochimiques de Sen1 et analysé comment elles permettent d'induire la terminaison. Pour cela, j'ai utilisé un ensemble de techniques in vitro, notamment un système de transcription-terminaison qui contient uniquement des composants purifiés : Sen1, l'ARN polymérase II (Pol II) et les ADN matrices. Ce système permet de modifier les différents éléments de façon contrôlée afin de comprendre leur rôle précis dans la terminaison. J'ai tout d'abord analysé la fonction des différents domaines de Sen1 dans la terminaison. Sen1 est une protéine de taille importante qui possède un domaine central catalytique flanqué par deux domaines impliqués dans l'interaction avec d'autres facteurs. J'ai montré que le domaine hélicase est suffisant pour déclencher la terminaison de la transcription in vitro. Ensuite, j'ai montré que Sen1 utilise l'énergie de l'hydrolyse de l'ATP pour se déplacer sur des acides nucléiques simple bras (ARN et ADN) dans le sens 5' vers 3'. J'ai alors étudié le rôle des différents acides nucléiques du système dans la terminaison par Sen1 et j'ai montré que l'interaction de Sen1 avec l'ADN n'est pas nécessaire; en revanche Sen1 doit s'associer à l'ARN naissant et se déplacer vers la polymérase. J'ai aussi montré qu'une fois que Sen1 entre en collision avec la Pol II, elle y exerce une action mécanique qui conduit à la terminaison uniquement quand la Pol II marque une pause. Cela indique que la terminaison est fortement dépendante de la pause transcriptionnelle. Deuxièmement, en collaboration avec le groupe d'E. Conti, nous avons réalisé une analyse structure-fonction du domaine hélicase de Sen1. Nous avons observé que Sen1 présente une organisation similaire à celle d'autres hélicases proches avec un core composé de deux domaines de type RecA avec plusieurs domaines auxiliaires. En général, le core est très conservé au sein des hélicases proches, alors que les domaines accessoires ont des caractéristiques distinctes qui confèrent des propriétés spécifiques aux différentes hélicases. En effet, nous avons identifié un sous-domaine spécifique à Sen1 mais conservé au cours de l'évolution que nous avons appelé le “brace”. Nous avons également détecté des différences notables au niveau d'un autre domaine accessoire que nous avons nommé le “prong”. Nous avons pu montrer que le “prong” est essentiel pour la terminaison par Sen1. Nos données suggèrent que les caractéristiques structurales spécifiques de Sen1 que nous avons révélées sont des déterminants majeurs de son activité dans la terminaison de la transcription. Finalement, nous avons utilisé Sen1 comme modèle pour étudier des mutations dans SETX qui sont associées à des maladies neurodégénératives. Nous avons introduit chez Sen1 une partie des mutations liées à des maladies et nous avons réalisé une caractérisation biochimique complète de chaque mutant. Nous avons ainsi montré que toutes les mutations sont fortement délétères pour la terminaison de la transcription. En conclusion, nos résultats ont permis d'améliorer la compréhension de l'origine des maladies provoquées par des mutations dans SETX
Rôle de la transcription pervasive antisens chez Saccharomyces cerevisiae dans la régulation de l'expression des gènes by Alicia Chery( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

L'expression des gènes est finement régulée dans la cellule et soumise à de multiples contrôles-qualité. Cette régulation intervient à différents niveaux, de façon à garantir une synthèse efficace des produits fonctionnels de l'expression génique, et pour assurer une adaptation à un changement environnemental. Notamment, les régulations transcriptionnelles sont cruciales pour contrôler la cinétique et le niveau d'expression des gènes. La transcription pervasive est une transcription généralisée non-codante et instable qui fut révélée chez la levure Saccharomyces cerevisiae. Bien que son potentiel régulateur ait été démontré de façon ponctuelle, la question de sa fonctionnalité globale restait ouverte. Lors de ma thèse, j'ai pu montrer l'existence de phénomènes multiples d'interférence transcriptionnelle liés à la transcription pervasive, pour co-réguler un ensemble de gènes entre la phase exponentielle et la quiescence. En effet, la transcription non-codante en antisens des gènes concernés conduit à leur répression, dans des conditions où ils ne doivent pas être exprimés. Le mécanisme de répression fait intervenir des modifications de la chromatine. La levure bourgeonnante, dépourvue de la machinerie d'ARN interférence, présente donc un système fin de régulation de l'expression génique utilisant la transcription pervasive
Etude de facteurs impliqués dans le contrôle-qualité de l'expression des gènes, chez Saccharomyces cerevisiae by Elodie Zhang( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

La régulation et le contrôle-qualité de l'expression génique permettent respectivement de maintenir un équilibre entre synthèse et dégradation des ARNm répondant aux besoins cellulaires et d'empêcher l'expression d'ARNm ou protéines aberrants potentiellement toxiques. Pour mieux comprendre ces processus cytoplasmiques, je me suis intéressée à Jlp2, Tac4 et Ska1, trois protéines ayant des liens physiques ou fonctionnels avec des acteurs du contrôle-qualité des ARNm et peptides appartenant aux complexes RQC et SKI. Jlp2 montre des liens de létalité synthétique avec les complexes RQC et SKI mais son absence n'altère pas le " NonStop mRNA Decay ". Elle pourrait donc être impliquée dans une autre voie de contrôle dépendante des complexes RQC et SKI. Tac4 est une ARN hélicase putative associée aux ribosomes, au niveau de l'hélice H16 de l'ARNr 18S comme son homologue putatif mammifère DHX29. Elle interagit également au niveau de régions 3'UTR d'ARNm. Ces observations suggèrent que Tac4 pourrait être impliquée dans la réinitiation de la traduction et le sauvetage de ribosomes non-dissociés récemment identifiés dans la région 3'UTR d'ARNm. Enfin, nous avons identifié Ska1, une protéine appartenant à une nouvelle sous-population de complexes SKI. Nos données suggèrent que ce complexe SKI-Ska1 est impliqué dans la dégradation de transcrits dépourvus de ribosome. Nous proposons un modèle selon lequel ce complexe SKI-Ska1 agirait durant la dégradation de 3'UTR avec l'exosome, puis en arrivant dans la région codante et en rencontrant un ribosome, Ska1 se dissocierait du complexe pour lui permettre d'interagir directement avec le ribosome et poursuivre la dégradation 3'-5' de l'ARN
Evolution of the human & mouse X-chromosome inactivation regulatory network by Olga Rosspopoff( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Long non-coding RNAs (lncRNAs) have emerged as the major output of mammalian transcriptomes. As of today, the function of the majority of lncRNAs remains largely enigmatic and importantly may be mediated by various entities such as the transcript itself, the act of transcription or key regulatory elements within the locus. A remarkable characteristic of lncRNAs is their poor evolutionary conservation, which raises the question of their contribution to species-specific regulatory mechanisms.X chromosome inactivation (XCI) is a paradigm for epigenetic processes mediated by lncRNA genes (LRGs) and a powerful model to explore their functional, mechanistic and evolutionary aspects. XCI is a process initiated early during embryonic development, which ensures the dosage compensation of X-linked genes between male and female in mammals. In the mouse, XCI is triggered by the combined action of several LRGs, among which Xist is the key regulator of the process. Xist is produced from a genomic region, the X-chromosome inactivation center (Xic), that is enriched for LRGs described either as positive or negative XCI regulators. In the present study, we investigated the evolutionary conservation of two candidate LRGs, JPX and FTX, and their contribution to XIST regulation in both human and mouse.In the mouse, we demonstrated that the Jpx RNA is required for proper Xist expression and acts as a post-transcriptional regulator of Xist, most likely by affecting its accumulation or stability. In striking contrast, in human, it is JPX transcription, but not the transcript itself, that controls the RNA Polymerase II (RNAPII) recruitment at XIST promoter. Accordingly, the two genes are interacting through local chromosome conformation, emphasized by RNAPII bridges in between the two loci. While the function of JPX/Jpx in promoting XIST/Xist accumulation is conserved between human and mouse, the underlying mechanisms diverge markedly. On the other hand, preliminary results on FTX function in human, suggest that it might be involved in XCI maintenance in human in very specific cellular contexts. Altogether, these results shed a new light on the functional evolution of XIST regulatory network between mouse and human that might be specifically adapted to XCI requirements in each species. This work highlights the functional plasticity of lncRNAs in evolution and how it might play important roles in species-specific mechanism of gene regulation
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for RNA qualit ... to 0.00 for RNA qualit ...)

Alternative Names
Domenico Libri wetenschapper

Languages
English (10)

French (7)