Bouyanfif, Houssny (1977-....).
Works: | 6 works in 7 publications in 2 languages and 9 library holdings |
---|---|
Roles: | Opponent, Other, Author |
1 edition published in 2020 in English and held by 2 WorldCat member libraries worldwide
1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide
2 editions published in 2005 in French and held by 2 WorldCat member libraries worldwide
1 edition published in 2015 in French and held by 1 WorldCat member library worldwide
The European RoHS directive in 2002 predicts a progressive prohibition of lead-based compounds. Or the piezoelectric materials that exhibit the strongest ferroelectric-ferroelastic coupling and are widely used as such as piezoelectric sensors or more recently for energy recovery applications are precisely lead based. The solid solution Bi1-xGaxFeO3 has been explored in search of a morphotropic phase boundary (MPB). Two ferroelectric phases can then coexist and the instability of the resulting polarization can then improve the electromechanical response. Gradients composition BGFO-x epitaxial thin films were deposited by pulsed laser deposition on La0,8Sr0,2MnO3 electrodes. They were characterized by WDX and RBS. The crystal structures were determined by micro X-ray diffraction. The effective piezoelectric response d33eff is measured at different scales, by PFM (a few nm) and by laser interferometry (a few microns) along the gradient. Instead of an analysis of a range of compositions that point might miss the most interesting, the inherent continuity combinatorial method was used to highlight a remarkable increase in piezoelectric response around 7% Ga, precisely in the vicinity of a change of symmetry
1 edition published in 2014 in French and held by 1 WorldCat member library worldwide
In multiferroics, at least two different ferroic orders coexist (ferromagnetic, ferroelectric, ferroelastici and ferrotoroidici) or anti-ferroic. These different properties can be coupled or not. Among these materials, the most studied are those with magnetic and ferroelectric orders. The presence of magnetoelectric coupling between these two orders, allows one to control the polarization by the application of a magnetic field and vice versa. However very few of these materials have transition temperatures above room temperature. These multiferoics materials can be separated into two categories : the first one includes the materials where the transitions of both orders are independent ; the second comprises the materials the ferroelectric transition of which is related to magnetic ordering. In this thesis we have studied two types of multiferroic oxides, one belongs to the first category (YMnO3) and the other to the second (RCrO3 )
1 edition published in 2012 in French and held by 1 WorldCat member library worldwide
The current information systems depend strongly on the microwave technology used for wireless communications. The enhanced performance of MEMS radio frequency capacity in X-band (8 GHz and 12 GHz) is an important issue not only for Telecom applications but also for Radar applications. The integration of ferroelectric materials with high-k t is highly demanded to replace the traditional dielectrics. This high-k property is accessible for compounds derived from the perovskite structure. Incorporating such materials in switches radio-frequency (RF-MEMS) impose however new chalenges in terms of the compatibility with the existing MEMS technologies. This thesis is focused on the compound PMN-PT with composition 65/35, which has a relative permittivity greater than 10,000 in the form of bulk material.This thesis has been devoted to the study of the integration of PMN-PT thin films in passive components such as MEMS switches. In the frequency range of interest, 500 MHz to 20 GHz, the properties of these materials have not been studied in bulk materials and even less in the form of thin films. The aim of this thesis was to fabricate the ferroelectric thin films and test their compatibility in the overall operation of a MEMS component. This study provides a reciprocal analysis FeMEMS (MEMS based on ferroelectrics) to complete knowledge of these materials in this frequency range. This work makes interest to both the industry and MEMS ferroelectric materials science who is trying to understand the physical mechanisms governing the dielectric properties in terms of losses in this particular range of frequencies.The characterizations of RF-MEMS presented in this thesis have demonstrated the compatibility of MEMS PMN-PT in the frequency range between 500MHz to 10 GHz with very good performance. Using this adaptation, the current technology is able to cover the most important frequency bands: the civil band telecommunication 1 GHz to 5 GHz using the PMN-PT, the X-band satellites between 5 GHz and 15 GHz with PZT and high frequency band of 15 GHz to 40 GHz for the defense with traditional dielectric (Si3N4)
0 |
![]() |
1 | ||
General | Special |

- Karkut, Michael (1948-....). Thesis advisor
- Hao, Shenglan
- El Marssi, Mimoun Other
- Saadoune, Ismael Other
- Lahmar, Abdelilah Other
- Dkhil, Brahim
- El Ammari, Lahcen Other
- Ruello, Pascal
- Gemeiner, Pascale
- École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire) Other