WorldCat Identities

Chevallereau, Anne (1990-....).

Overview
Works: 1 works in 1 publications in 1 language and 1 library holdings
Roles: Author
Publication Timeline
.
Most widely held works by Anne Chevallereau
Comprehensive study of new virulent bacteriophages : from transcriptomic and mechanistic characterisations towards evolutionary perspectives by Anne Chevallereau( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Previous investigations in the field of phage therapy led to the discovery of two new genera of bacteriophages (phages), namely Kpp10virus and Pakpunavirus whose infection mechanisms are unknown. It is acknowledged that a successful infection is notably ensured by an effective takeover of host cell resources, leading to its transformation into a virocell, a cellular organism exclusively dedicated to the production of progeny phages.This PhD work aims to provide a comprehensive view of molecular strategies set up by Kpp10virus and Pakpunavirus (represented by phages PAK_P3 and PAK_P4, respectively) to infect the opportunist pathogen Pseudomonas aeruginosa.First, we assessed phage intrinsic properties by analyzing their genomic content, evaluating their host range and growth parameters and identifying their bacterial receptor.Then, by coupling transcriptomics and metabolomics approaches, we found that both viruses have similar transcriptional programs, with a temporal regulation of their gene expression and production of antisense transcripts. They both strikingly prompt a rapid degradation of 90% of host mRNAs, which are eventually replaced by viral RNAs. Despite this extensive degradation, we found that both phages do not shutoff host metabolism but redirect biosynthesis pathways, however through different mechanisms. In addition, we found that a common host response is elicited upon both PAK_P3 and PAK_P4 infections and hypothesized it represents an attempt of the host to repair extensive RNA damage.Finally, we investigated the functions of an early produced phage protein (Gp92), broadly conserved in both phage genera, in order to identify particular mechanisms of host subversion used by these phages. When expressed alone in the host, Gp92 alters cell morphology and interacts with the bacterial regulatory complex sigma/anti-sigma involved in stress response (namely AlgU- MucA). Our study suggests a potential role of Gp92 in alleviating the stress caused by phage infection.This manuscript provides a model of virocell transformation upon infection of P. aeruginosa by PAK_P3 or PAK_P4. In addition, by comparing their reproductive strategies, it addresses the evolution of infection mechanisms in virulent phages deriving from a common ancestor
 
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.99 (from 0.99 for Comprehens ... to 0.99 for Comprehens ...)

Alternative Names
Anne Chevallereau onderzoeker

Languages