Métivier, Christel (1980....).
Overview
Works:  7 works in 8 publications in 2 languages and 8 library holdings 

Roles:  Opponent, Thesis advisor, Other, Author 
Publication Timeline
.
Most widely held works by
Christel Métivier
Instabilité de RayleighBénard dans les fluides à seuil : critère de démarrage, expériences et modélisation by
Chong Li(
)
1 edition published in 2015 in French and held by 2 WorldCat member libraries worldwide
La convection de RayleighBénard est étudiée expérimentalement dans une cellule circulaire. Des fluides à seuil modèles (gels aqueux de Carbopol) sont mis en œuvre. Leurs comportements rhéologiques et leurs perméabilités en relation avec leurs microstructures ont été finement caractérisés. Dans toute la thèse, les expériences ont été menées sans glissement à la paroi. L'influence du seuil d'écoulement et de la distance entre plaques chaudes et froides sur les transferts thermiques a été approfondie. Trois mécanismes sont discutés pour expliquer le déclenchement de la convection: i) les propriétés viscoélastiques audessous du seuil, ii) le fluage audessous du seuil, iii) une approche d'un milieu poreux pour les gels de Carbopol considérés comme une suspension de microgels. On montre que le nombre de seuil Y, représentant le rapport entre la contrainte du seuil et la contrainte de la poussée d'Archimède est un paramètre important gouvernant l'apparition de l'instabilité. Les valeurs critiques de Y^(1) sont déterminées entre 60 et 90. La visualisation à l'aide des cristaux liquides thermochromiques a permis une vue globale de la cinématique. Les structures observées dans les différents états thermiques montrent l'évolution de la convection. Une analyse qualitative du champ de température est également présentée. Enfin, la simulation numérique dans une cellule carré avec un modèle d'HerschelBulkley régularisé dans la gamme des nombres sans dimension utilisée dans les expérience a permis de mettre en évidence les paramètres critiques et la morphologie des champs thermiques et cinématique. Les ordres de grandeurs du nombre de seuil critique prédit se comparent raisonnablement avec les valeurs expérimentales
1 edition published in 2015 in French and held by 2 WorldCat member libraries worldwide
La convection de RayleighBénard est étudiée expérimentalement dans une cellule circulaire. Des fluides à seuil modèles (gels aqueux de Carbopol) sont mis en œuvre. Leurs comportements rhéologiques et leurs perméabilités en relation avec leurs microstructures ont été finement caractérisés. Dans toute la thèse, les expériences ont été menées sans glissement à la paroi. L'influence du seuil d'écoulement et de la distance entre plaques chaudes et froides sur les transferts thermiques a été approfondie. Trois mécanismes sont discutés pour expliquer le déclenchement de la convection: i) les propriétés viscoélastiques audessous du seuil, ii) le fluage audessous du seuil, iii) une approche d'un milieu poreux pour les gels de Carbopol considérés comme une suspension de microgels. On montre que le nombre de seuil Y, représentant le rapport entre la contrainte du seuil et la contrainte de la poussée d'Archimède est un paramètre important gouvernant l'apparition de l'instabilité. Les valeurs critiques de Y^(1) sont déterminées entre 60 et 90. La visualisation à l'aide des cristaux liquides thermochromiques a permis une vue globale de la cinématique. Les structures observées dans les différents états thermiques montrent l'évolution de la convection. Une analyse qualitative du champ de température est également présentée. Enfin, la simulation numérique dans une cellule carré avec un modèle d'HerschelBulkley régularisé dans la gamme des nombres sans dimension utilisée dans les expérience a permis de mettre en évidence les paramètres critiques et la morphologie des champs thermiques et cinématique. Les ordres de grandeurs du nombre de seuil critique prédit se comparent raisonnablement avec les valeurs expérimentales
Convection de RayleighBénard pour des fluides rhéofluidifiants : approche théorique et expérimentale by
Mondher Bouteraa(
)
1 edition published in 2016 in English and held by 1 WorldCat member library worldwide
Une étude théorique et expérimentale de la convection de RayleighBénard pour un fluide nonNewtonien rhéofluidifiant a été effectuée. L'approche théorique consiste en une analyse linéaire et faiblement non linéaire de l'instabilité thermoconvective d'une couche horizontale d'un fluide nonNewtonien, d'étendue supposée infinie dans le plan horizontal, chauffée par le bas et refroidie par le haut. Le comportement rhéofluidifiant est décrit par le modèle de Carreau. Pour ce modèle, les conditions critiques d'instabilité du régime conductif sont les mêmes que pour un fluide Newtonien. L'objectif de l'analyse faiblement non linéaire consiste à déterminer d'une part la valeur critique du degré de rhéofluidification à partir duquel la bifurcation primaire devient sous critique et d'autre part l'influence de rhéofluidification sur la sélection du motif de convection au voisinage des conditions critiques, en tenant compte d'un éventuel glissement à la paroi, d'une conductivité thermique finie de celleci et de la thermodépendance de la viscosité. Les conséquences sur le champ de viscosité et l'évolution du nombre de Nusselt sont caractérisées. L'approche expérimentale consiste à visualiser par ombroscopie les motifs de convection qui se développent dans une cellule cylindrique. Deux rapports d'aspect ont été considérés : AR = 3 et AR = 4. Les fluides utilisés sont des solutions aqueuses de Xanthan à différentes concentrations. L'influence du degré de rhéofluidification combiné avec la thermodépendance de la viscosité sur le domaine de stabilité des rouleaux et des hexagones ainsi que sur la zone de transitions rouleaux hexagones est mise en évidence
1 edition published in 2016 in English and held by 1 WorldCat member library worldwide
Une étude théorique et expérimentale de la convection de RayleighBénard pour un fluide nonNewtonien rhéofluidifiant a été effectuée. L'approche théorique consiste en une analyse linéaire et faiblement non linéaire de l'instabilité thermoconvective d'une couche horizontale d'un fluide nonNewtonien, d'étendue supposée infinie dans le plan horizontal, chauffée par le bas et refroidie par le haut. Le comportement rhéofluidifiant est décrit par le modèle de Carreau. Pour ce modèle, les conditions critiques d'instabilité du régime conductif sont les mêmes que pour un fluide Newtonien. L'objectif de l'analyse faiblement non linéaire consiste à déterminer d'une part la valeur critique du degré de rhéofluidification à partir duquel la bifurcation primaire devient sous critique et d'autre part l'influence de rhéofluidification sur la sélection du motif de convection au voisinage des conditions critiques, en tenant compte d'un éventuel glissement à la paroi, d'une conductivité thermique finie de celleci et de la thermodépendance de la viscosité. Les conséquences sur le champ de viscosité et l'évolution du nombre de Nusselt sont caractérisées. L'approche expérimentale consiste à visualiser par ombroscopie les motifs de convection qui se développent dans une cellule cylindrique. Deux rapports d'aspect ont été considérés : AR = 3 et AR = 4. Les fluides utilisés sont des solutions aqueuses de Xanthan à différentes concentrations. L'influence du degré de rhéofluidification combiné avec la thermodépendance de la viscosité sur le domaine de stabilité des rouleaux et des hexagones ainsi que sur la zone de transitions rouleaux hexagones est mise en évidence
Simulation des Instabilites Thermoconvectives de Fluides Complexes par des Approches MultiEchelles by
Mohammad Saeid Aghighi(
)
1 edition published in 2014 in French and held by 1 WorldCat member library worldwide
In this research work we are looking for two main physical and numerical purposes. The physical problem is to find the solution of Rayleigh Bénard convection for several conditions dependent on fluid thermophysical properties such as temperature, viscosity and initial and boundary conditions. Continuing previous research works in this study we have provided the results of Rayleigh Bénard convection for Newtonian, Powerlaw and viscoplastic fluids (Bingham, HerschelBulkley and Casson) and for steady state and transient conditions. We also solve this problem for Nano and soft glassy materials. In some cases the results are interesting not only as a part of the Rayleigh Bénard convection analysis but also on a larger scale as a part of the heat transfer and mechanical fluid analysis such as viscoplastic and soft glassy material studies. Numerically, it was interesting to develop Proper Generalized Decomposition (PGD) method for solving transient coupled nonlinear models, in particular the one related to the RayleighBénard flow. This model also was used to solve RBC problem parametrically by adding some physical properties as extra coordinates. For soft glassy material we used PGD to connect micro and macro equations together
1 edition published in 2014 in French and held by 1 WorldCat member library worldwide
In this research work we are looking for two main physical and numerical purposes. The physical problem is to find the solution of Rayleigh Bénard convection for several conditions dependent on fluid thermophysical properties such as temperature, viscosity and initial and boundary conditions. Continuing previous research works in this study we have provided the results of Rayleigh Bénard convection for Newtonian, Powerlaw and viscoplastic fluids (Bingham, HerschelBulkley and Casson) and for steady state and transient conditions. We also solve this problem for Nano and soft glassy materials. In some cases the results are interesting not only as a part of the Rayleigh Bénard convection analysis but also on a larger scale as a part of the heat transfer and mechanical fluid analysis such as viscoplastic and soft glassy material studies. Numerically, it was interesting to develop Proper Generalized Decomposition (PGD) method for solving transient coupled nonlinear models, in particular the one related to the RayleighBénard flow. This model also was used to solve RBC problem parametrically by adding some physical properties as extra coordinates. For soft glassy material we used PGD to connect micro and macro equations together
Analyse des écoulements autour d'un obstacle et des instabilités thermiques dans un fluide élastoviscoplastique : modélisation
numérique par la MEFPIL et comparaison expérimentale by
Moctar Gueye(
)
1 edition published in 2020 in English and held by 1 WorldCat member library worldwide
In industrial processes in which yield stress fluids are involved, the sudden transition between solid and fluid states depending on the applied load is a major issue in manyapplications. Additionally, yield stress fluids exhibit other characteristics including their slippage and the existence of elastic deformation below the yield stress.This thesis aims to understand the structure of elastoviscoplastic fluid flows and, in particular, the parameters affecting flow morphology and applied forces.This research analyses two situations: (1) fluid flows around a plate perpendicular to the flow and (2) Rayleigh Bénard's instabilities based on numerical modelling with FEMLIP.Firstly, the objective is to identify the effects of plasticity and elasticity using the law of elastoviscoplastic behaviour, which is an association of HerschelBulkley's andMaxwell's models. Moreover, the effects of plasticity and elasticity are compared with available experimental results obtained with a fluid model (Carbopol gel).In this comparison, more complex effects (Shearthinning, wall slip, the initial state of stress) have been taken into account. The results show a decrease in drag coefficient of the plate when the Oldroyd number (ratio between plastic and viscous effects) becomes predominant. Drag force is also reduced when the Oldroyd number (ratio between plastic and viscous effects) is predominant. The drag coefficient tends towards an asymptotic value which indicates that beyond a certain Oldroyd number, this drag coefficient is not governed by velocity but depends only on yield stress. Drag force increases with elasticity. Besides, the elastic effects are responsible for the dissymmetry that is observed between upstream and downstream the obstacle. The analysis of stress fields allows us to conclude that total drag force is dominated by pressure. Both experimentally and numerically, the influence of an initial state of stress of the material is observed significantly in the area of plastic effect predominant compared to viscous effects. The results obtained with FEMLIP are in the same orders of magnitude that the ones provided by the experiments. In Rayleigh Bénard's case of convection, for a purely viscoplastic fluid thus no elastic effect, the Nusselt number and the velocity norm decrease with an increasing plastic effect therefore the Bingham number (Bn). Beyond a critical value of the Bingham number Bnc (Bnc=1.7), the heat transfer is purely conductive one (Nu = 1). Therefore, elasticity plays a destabilizing role and leads to an enhancement of the convection strength as well as heat transfer via the mean Nusselt number (Nu = 1).Consequently, the size of the yielded regions increases with elasticity. In addition, an increase in the field of the second invariant of the stress tensor in the center of the cavity is shown with increasing Wi. Furthermore, we notice that the first difference of the normal components is the main responsible for the shape of the unyielded regions. The highest values of normal stresses are obtained in the area of recirculation of the fluid (vortex), indicating significant elastic effects. Kinematic, temperature and stress field, shape and size of yielded and unyielded zones investigations allowed to better understand the local phenomena for the same ratio of yield stress effects to buoyancy effects, leading for the slippage case to a distinct convective transfer and for the adherent case to a conductive transfer. The convective onset criteria are in the same orders of magnitude both in sliding and adherent conditions in comparison with experiments
1 edition published in 2020 in English and held by 1 WorldCat member library worldwide
In industrial processes in which yield stress fluids are involved, the sudden transition between solid and fluid states depending on the applied load is a major issue in manyapplications. Additionally, yield stress fluids exhibit other characteristics including their slippage and the existence of elastic deformation below the yield stress.This thesis aims to understand the structure of elastoviscoplastic fluid flows and, in particular, the parameters affecting flow morphology and applied forces.This research analyses two situations: (1) fluid flows around a plate perpendicular to the flow and (2) Rayleigh Bénard's instabilities based on numerical modelling with FEMLIP.Firstly, the objective is to identify the effects of plasticity and elasticity using the law of elastoviscoplastic behaviour, which is an association of HerschelBulkley's andMaxwell's models. Moreover, the effects of plasticity and elasticity are compared with available experimental results obtained with a fluid model (Carbopol gel).In this comparison, more complex effects (Shearthinning, wall slip, the initial state of stress) have been taken into account. The results show a decrease in drag coefficient of the plate when the Oldroyd number (ratio between plastic and viscous effects) becomes predominant. Drag force is also reduced when the Oldroyd number (ratio between plastic and viscous effects) is predominant. The drag coefficient tends towards an asymptotic value which indicates that beyond a certain Oldroyd number, this drag coefficient is not governed by velocity but depends only on yield stress. Drag force increases with elasticity. Besides, the elastic effects are responsible for the dissymmetry that is observed between upstream and downstream the obstacle. The analysis of stress fields allows us to conclude that total drag force is dominated by pressure. Both experimentally and numerically, the influence of an initial state of stress of the material is observed significantly in the area of plastic effect predominant compared to viscous effects. The results obtained with FEMLIP are in the same orders of magnitude that the ones provided by the experiments. In Rayleigh Bénard's case of convection, for a purely viscoplastic fluid thus no elastic effect, the Nusselt number and the velocity norm decrease with an increasing plastic effect therefore the Bingham number (Bn). Beyond a critical value of the Bingham number Bnc (Bnc=1.7), the heat transfer is purely conductive one (Nu = 1). Therefore, elasticity plays a destabilizing role and leads to an enhancement of the convection strength as well as heat transfer via the mean Nusselt number (Nu = 1).Consequently, the size of the yielded regions increases with elasticity. In addition, an increase in the field of the second invariant of the stress tensor in the center of the cavity is shown with increasing Wi. Furthermore, we notice that the first difference of the normal components is the main responsible for the shape of the unyielded regions. The highest values of normal stresses are obtained in the area of recirculation of the fluid (vortex), indicating significant elastic effects. Kinematic, temperature and stress field, shape and size of yielded and unyielded zones investigations allowed to better understand the local phenomena for the same ratio of yield stress effects to buoyancy effects, leading for the slippage case to a distinct convective transfer and for the adherent case to a conductive transfer. The convective onset criteria are in the same orders of magnitude both in sliding and adherent conditions in comparison with experiments
Etude expérimentale d'instabilités à travers la convection turbulente de RayleighBénard et les instabilités de trajectoires
de bulles en ascension by
Viswa Maitreyi Moturi(
)
1 edition published in 2019 in English and held by 1 WorldCat member library worldwide
The present work focuses on two common fluid flow problems namely, Turbulent RayleighBénard Convection and Path instability of rising bubbles immersed in a liquid. Concerning Rotating Turbulent RayleighBénard Convection, the flow field and temperature field were measured respectively by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in a vertical plan of symmetry of our cylindrical cell of aspect ratio 1. The weakening of the Large Scale Circulation with decreasing Rossby number  leading to its complete disappearance  was confirmed as well as the formation of vortex columns in the rotation dominated regime. By doing velocity cross correlations, it has been possible to prove experimentally that the vorticity of the columns change direction in the cell's center. The velocity fluctuations in the cell are highly anisotropic and follow a scaling of Ro0.2 in the rotation affected regime. The temperature of the vortex columns as well as of individual plumes has been estimated by LIF measurements. Concerning the Path instability of rising bubbles, small bubbles rise in straight path, whereas beyond a critical size, bubbles rise in zigzag or helical path. Some new experimental points on the marginal stability curve have been obtained by working in silicon oils of 5 and 10 cst and in water. The agreement with the most recent numerical simulations is only partial. The rise velocity, frequency and amplitude of oscillation have also been measured and suggest a supercritical Hopf bifurcation
1 edition published in 2019 in English and held by 1 WorldCat member library worldwide
The present work focuses on two common fluid flow problems namely, Turbulent RayleighBénard Convection and Path instability of rising bubbles immersed in a liquid. Concerning Rotating Turbulent RayleighBénard Convection, the flow field and temperature field were measured respectively by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in a vertical plan of symmetry of our cylindrical cell of aspect ratio 1. The weakening of the Large Scale Circulation with decreasing Rossby number  leading to its complete disappearance  was confirmed as well as the formation of vortex columns in the rotation dominated regime. By doing velocity cross correlations, it has been possible to prove experimentally that the vorticity of the columns change direction in the cell's center. The velocity fluctuations in the cell are highly anisotropic and follow a scaling of Ro0.2 in the rotation affected regime. The temperature of the vortex columns as well as of individual plumes has been estimated by LIF measurements. Concerning the Path instability of rising bubbles, small bubbles rise in straight path, whereas beyond a critical size, bubbles rise in zigzag or helical path. Some new experimental points on the marginal stability curve have been obtained by working in silicon oils of 5 and 10 cst and in water. The agreement with the most recent numerical simulations is only partial. The rise velocity, frequency and amplitude of oscillation have also been measured and suggest a supercritical Hopf bifurcation
Instabilités secondaires dans la convection de RayleighBénard pour des fluides rhéofluidifiants by
Thomas Varé(
)
1 edition published in 2019 in English and held by 1 WorldCat member library worldwide
In the RayleighBénard configuration, we consider a thin layer of fluid confined between two horizontal slabs which is heated from below and cooled from above. This layer undergoes an instability if the thermal gradient is strong enough: a transition from the conductive state to the convective state and called _ primary bifurcation _occurs. Moreover, it happens in an ordered way: we can notice the emergence of various convection patterns such as rolls, squares or hexagons. In their turn, these patterns undergo _ secondary instabilities _ that limit the range of stable wavenumbers. These instabilities are studied theoretically _firstly near the threshold thanks to a weakly nonlinear approach, and secondly far from critical conditions thanks to a strongly nonlinear approach. We consider a shear thinning fluid, the most common rheological behavior, which is described by the Carreau model. Near the threshold, two situations are considered: the first corresponds to finite conductivity plates, the second corresponds to a thermodependent fluid. In each case, the influence of the shear thinning effect on the nature of the pattern emerging at the primary bifurcation and on secondary instabilities is highlighted. To study the convection patterns far from the critical conditions, a continuation procedure is used to determine, stepbystep, the characteristics of the flow, such as the velocity or temperature fields and the Nusselt number
1 edition published in 2019 in English and held by 1 WorldCat member library worldwide
In the RayleighBénard configuration, we consider a thin layer of fluid confined between two horizontal slabs which is heated from below and cooled from above. This layer undergoes an instability if the thermal gradient is strong enough: a transition from the conductive state to the convective state and called _ primary bifurcation _occurs. Moreover, it happens in an ordered way: we can notice the emergence of various convection patterns such as rolls, squares or hexagons. In their turn, these patterns undergo _ secondary instabilities _ that limit the range of stable wavenumbers. These instabilities are studied theoretically _firstly near the threshold thanks to a weakly nonlinear approach, and secondly far from critical conditions thanks to a strongly nonlinear approach. We consider a shear thinning fluid, the most common rheological behavior, which is described by the Carreau model. Near the threshold, two situations are considered: the first corresponds to finite conductivity plates, the second corresponds to a thermodependent fluid. In each case, the influence of the shear thinning effect on the nature of the pattern emerging at the primary bifurcation and on secondary instabilities is highlighted. To study the convection patterns far from the critical conditions, a continuation procedure is used to determine, stepbystep, the characteristics of the flow, such as the velocity or temperature fields and the Nusselt number
Instabilités thermoconvectives pour des fluides viscoplastiques by
Christel Métivier(
Book
)
2 editions published in 2006 in French and held by 1 WorldCat member library worldwide
The stability of the Poiseuille RayleighBénard flow for yield stress fluids is performed via linear, weakly non linear and non linear approaches. These fluids are widely used in industrial processes and at a larger scale in geophysics. It is assumed that the rheological behaviour of the material is described by the Bingham model. This model assumes that the material moves as a rigid solid when the applied stress is less than the yield stress and as a viscous fluid when the yield stress is exceeded. The aim of this study is to understand the influence of the yield stress on the stability conditions. It arises from the modification of the thickness of the yielded regions, the viscosity stratification inside these regions and the modification of the viscous dissipation. A fundamental difficulty by comparison with the Newtonian case lies in the description of the behaviour of the interface separating the ``gellike" and ``fluidlike" phases. First, a linear analysis using modal and energetic approaches is developped. Results clearly highlight the stabilizing effect of the yield stress. Then, a weakly non linear analysis is performed to identify the nature of the bifurcation. Original results are obtained and show a change in the nature of the bifurcation at Péclet number . This is a consequence of the strong viscosity stratification. Finally, a non linear analysis was done using ReynoldsOrr type equation. The behaviour of the critical conditions as function of the yield stress is determined
2 editions published in 2006 in French and held by 1 WorldCat member library worldwide
The stability of the Poiseuille RayleighBénard flow for yield stress fluids is performed via linear, weakly non linear and non linear approaches. These fluids are widely used in industrial processes and at a larger scale in geophysics. It is assumed that the rheological behaviour of the material is described by the Bingham model. This model assumes that the material moves as a rigid solid when the applied stress is less than the yield stress and as a viscous fluid when the yield stress is exceeded. The aim of this study is to understand the influence of the yield stress on the stability conditions. It arises from the modification of the thickness of the yielded regions, the viscosity stratification inside these regions and the modification of the viscous dissipation. A fundamental difficulty by comparison with the Newtonian case lies in the description of the behaviour of the interface separating the ``gellike" and ``fluidlike" phases. First, a linear analysis using modal and energetic approaches is developped. Results clearly highlight the stabilizing effect of the yield stress. Then, a weakly non linear analysis is performed to identify the nature of the bifurcation. Original results are obtained and show a change in the nature of the bifurcation at Péclet number . This is a consequence of the strong viscosity stratification. Finally, a non linear analysis was done using ReynoldsOrr type equation. The behaviour of the critical conditions as function of the yield stress is determined
Audience Level
0 

1  
Kids  General  Special 
Related Identities
 École doctorale Ingénierie  matériaux mécanique énergétique environnement procédés production (Grenoble) Other
 Nouar, Chérif Opponent Thesis advisor
 Jay, Pascal Other
 Laboratoire rhéologie et procédés (Grenoble) Other
 Magnin, Albert Opponent Thesis advisor
 Ammar, Amine Other Opponent Thesis advisor
 Li, Chong (1987....). Author
 Davaille, Anne Other Opponent
 Laboratoire d'énergétique et de mécanique théorique et appliquée (Nancy) Other
 Université de Lorraine Degree grantor