WorldCat Identities

Lambert-Lacroix, Sophie

Overview
Works: 12 works in 13 publications in 2 languages and 20 library holdings
Roles: Other, Thesis advisor, Author, Opponent
Publication Timeline
.
Most widely held works by Sophie Lambert-Lacroix
Fonction d'autocorrélation partielle des processus à temps discret non stationnaires et applications by Sophie Lambert-Lacroix( Book )

2 editions published in 1998 in French and held by 4 WorldCat member libraries worldwide

Cette thèse présente la fonction d'autocorrélation partielle d'un processus non stationnaire ainsi que des applications dans le domaine spectral et dans le cadre des processus périodiquement corrélés. Après avoir introduit cette fonction, nous montrons qu'elle caractérise la structure au second ordre des processus non stationnaires. Son intérêt est d'être facilement identifiable par rapport à la fonction d'autocovariance qui doit être de type positif. De plus elle conduit de façon naturelle à la définition d'un nouveau spectre dépendant du temps. Ce dernier décrit, à chaque instant, une situation stationnaire dans laquelle le présent est corrélé avec le passé de la même façon que le processus non stationnaire au même instant. L'étude des propriétés de ce spectre permet de le comparer à deux autres de même nature. On se restreint ensuite à la classe particulière des processus périodiquement corrélés. La fonction d'autocorrélation partielle fournit une nouvelle paramétrisation qui permet, en particulier, d'étendre de façon naturelle la méthode du maximum d'entropie à cette situation. Enfin nous considérons l'estimation autorégressive dans le cadre de ces processus en proposant une estimation adéquate de ces paramètres. La comparaison avec les procédures existantes est effectuée en regroupant certaines d'entre elles dans une même méthodologie mais aussi par simulation. Nous étudions également le lien entre ces approches et celles du cas vectoriel stationnaire
Etudes cryptographiques et statistiques de signaux compromettants by Yanis Linge( )

1 edition published in 2013 in French and held by 2 WorldCat member libraries worldwide

The main subject of this manuscript is the Side Channel Attacks. These attacks investigate the variation of device emanations to retrieve a secret key. These emanations can be the power consumption, the electromagnetic radiation, etc. Most of the time, those attacks use statistical methods to examine the relationship between the emanations and some leakage models supposed by the attacker. Three main axis are developed here. First, we have implemented many side channel attacks on GPGPU using the API OpenCL. These implementations are more effective than the classical ones, so an attacker can exploit more data. Then, in order to provide a new side channel attack, we have suggested the use of a new dependency measurement proposed by Reshef et al., the MIC. The MIC is more advantageous than the mutual information, because its computation does not depend of a kernel choice nor a windows size. So, its use in side channel analysis is simple, even if the time complexity is large. Finally, we have introduced a new attack based on the join distribution of the input and the output of a cryptographic sub-function. If the distribution depends on the key used in the function, we can retrieve the secret key. This attack can be efficient even in presence of some countermeasures because it does not required the knowledge of both plain text or cipher text
Détection multidimensionnelle au test paramétrique avec recherche automatique des causes by Ali Hajj Hassan( )

1 edition published in 2014 in French and held by 2 WorldCat member libraries worldwide

Nowadays, control of manufacturing process is an essential task to ensure production of high quality. At the end of the semiconductor manufacturing process, an electric test, called Parametric Test (PT), is performed. The PT aims at detecting wafers whose electrical behavior is abnormal, based on a set of static electrical parameters measured on multiple sites of each wafer. The purpose of this thesis is to develop a dynamic detection system at PT level to detect abnormal wafers from a recent history of electrical measurements. For this, we develop a real time detection system based on an optimized learning technique, where training data and detection model are updated through a moving temporal window. The detection scheme is based on one class Support Vector Machines (1-SVM), a variant of the statistical learning algorithm SVM widely used for binary classification. 1-SVM was introduced in the context of one class classification problems for anomaly detection. In order to improve the predictive performance of the 1-SVM classification algorithm, two variable selection methods are developed. The first one is a filter method based on a calculated score with MADe filter, a robust approach for univariate outlier detection. The second one is of wrapper type that adapts the SVM Recursive Feature Elimination method (SVM-RFE) to the 1-SVM algorithm. For detected abnormal wafers, we propose a method to determine their multidimensional signatures to identify the electrical parameters responsible for the anomaly. Finally, we evaluate our proposed system on real datasets of STMicroelecronics and compare it to the detection system based on Hotelling's T2 test, one of the most known detection systems in the literature. The results show that our system yields very good performance and can provide an efficient way for real-time detection
Fonction d'autocorrélation partielle des processus à temps discret non stationnaires et applications by Sophie Lambert-Lacroix( )

1 edition published in 2004 in French and held by 2 WorldCat member libraries worldwide

Cette thèse présente la fonction d'autocorrélation partielle d'un processus non stationnaire ainsi que des applications dans le domaine spectral et dans le cadre des processus périodiquement corrélés. Après avoir introduit cette fonction, nous montrons qu'elle caractérise la structure au second ordre des processus non stationnaires. Son intérêt est d'être facilement identifiable par rapport à la fonction d'autocovariance qui doit être de type positif. De plus elle conduit de façon naturelle à la définition d'un nouveau spectre dépendant du temps. Ce dernier décrit, à chaque instant, une situation stationnaire dans laquelle le présent est corrélé avec le passé de la même façon que le processus non stationnaire au même instant. L'étude des propriétés de ce spectre permet de le comparer à deux autres de même nature. On se restreint ensuite à la classe particulière des processus périodiquement corrélés. La fonction d'autocorrélation partielle fournit une nouvelle paramétrisation qui permet, en particulier, d'étendre de façon naturelle la méthode du maximum d'entropie à cette situation. Enfin nous considérons l'estimation autorégressive dans le cadre de ces processus en proposant une estimation adéquate de ces paramètres. La comparaison avec les procédures existantes est effectuée en regroupant certaines d'entre elles dans une même méthodologie mais aussi par simulation. Nous étudions également le lien entre ces approches et celles du cas vectoriel stationnaire
Classification non supervisée et sélection de variables dans les modèles mixtes fonctionnels. Applications à la biologie moléculaire by Joyce Giacofci( )

1 edition published in 2013 in French and held by 2 WorldCat member libraries worldwide

Un nombre croissant de domaines scientifiques collectent de grandes quantités de données comportant beaucoup de mesures répétées pour chaque individu. Ce type de données peut être vu comme une extension des données longitudinales en grande dimension. Le cadre naturel pour modéliser ce type de données est alors celui des modèles mixtes fonctionnels. Nous traitons, dans une première partie, de la classification non-supervisée dans les modèles mixtes fonctionnels. Nous présentons dans ce cadre une nouvelle procédure utilisant une décomposition en ondelettes des effets fixes et des effets aléatoires. Notre approche se décompose en deux étapes : une étape de réduction de dimension basée sur les techniques de seuillage des ondelettes et une étape de classification où l'algorithme EM est utilisé pour l'estimation des paramètres par maximum de vraisemblance. Nous présentons des résultats de simulations et nous illustrons notre méthode sur des jeux de données issus de la biologie moléculaire (données omiques). Cette procédure est implémentée dans le package R "curvclust" disponible sur le site du CRAN. Dans une deuxième partie, nous nous intéressons aux questions d'estimation et de réduction de dimension au sein des modèles mixtes fonctionnels et nous développons en ce sens deux approches. La première approche se place dans un objectif d'estimation dans un contexte non-paramétrique et nous montrons dans ce cadre, que l'estimateur de l'effet fixe fonctionnel basé sur les techniques de seuillage par ondelettes possède de bonnes propriétés de convergence. Notre deuxième approche s'intéresse à la problématique de sélection des effets fixes et aléatoires et nous proposons une procédure basée sur les techniques de sélection de variables par maximum de vraisemblance pénalisée et utilisant deux pénalités SCAD sur les effets fixes et les variances des effets aléatoires. Nous montrons dans ce cadre que le critère considéré conduit à des estimateurs possédant des propriétés oraculaires dans un cadre où le nombre d'individus et la taille des signaux divergent. Une étude de simulation visant à appréhender les comportements des deux approches développées est réalisée dans ce contexte
Classification based on extensions of LS-PLS using logistic regression: application to clinical and multiple genomic data by Caroline Bazzoli( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

Non-smooth optimization for the estimation of cellular immune components in a tumoral environment by Quentin Klopfenstein( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

In this PhD proposal we will investigate new regularization methods of inverse problems that provide an absolute quantification of immune cell subpopulations. The mathematical aspect of this PhD proposal is two-fold. The first goal is to enhance the underlying linear model through a more refined construction of the expression matrix. The second goal is, given this linear model, to derive the best possible estimator. These two issues can be treated in a decoupled way, which is the standard for existing methods such as Cibersort, or as a coupled optimization problem (which is known as blind deconvolution in signal processing)
Modélisation flexible du risque d'événements iatrogènes radio-induits by Mohamed Amine Benadjaoud( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

Radiotherapy plays a major role in the therapeutic arsenal against cancer. Despite significant advances in technology for nearly twenty years, healthy tissues near or away from the target tumor remain inevitably irradiated at very different levels of doses. These doses are at the origin of early side effects (edema, radiation necrosis, dysphagia, cystitis) or late (rectal bleeding, telangiectasia, carcinogenic, cerebrovascular diseases). It is therefore essential to quantify and prevent these side effects to improve the patient quality of life after their cancer treatment.The objective of this thesis was to propose modelling methods able to answer specific questions asked in both aspects, dosimetry and statistics, involved in the modeling risk of developing radiation-induced iatrogenic pathologies.Our purpose was firstly to assess the out-of-field dose component related to head scatter radiation in high-energy photon therapy beams and then derive a multisource model for this dose component. For measured doses under out-of-field conditions, the average local difference between the calculated and measured photon dose is 10%, including doses as low as 0.01% of the maximum dose on the beam axis. We secondly described a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding for In the flexible Cox model context, we proposed a new dimension reduction technique based on a functional principal component analysis to estimate a dose-response relationship. A two-stage knots selection scheme was performed: a potential set of knots is chosen based on information from the rotated functional principal components and the final knots selection is then based on statistical model selection. Finally, a multilevel functional principal component analysis was applied to radiobiological data in order to quantify the experimental Variability for replicate measurements of fluorescence signals of telomere length
Multivariate analysis of high-throughput sequencing data by Ghislain Durif( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

L'analyse statistique de données de séquençage à haut débit (NGS) pose des questions computationnelles concernant la modélisation et l'inférence, en particulier à cause de la grande dimension des données. Le travail de recherche dans ce manuscrit porte sur des méthodes de réductions de dimension hybrides, basées sur des approches de compression (représentation dans un espace de faible dimension) et de sélection de variables. Des développements sont menés concernant la régression "Partial Least Squares" parcimonieuse (supervisée) et les méthodes de factorisation parcimonieuse de matrices (non supervisée). Dans les deux cas, notre objectif sera la reconstruction et la visualisation des données. Nous présenterons une nouvelle approche de type PLS parcimonieuse, basée sur une pénalité adaptative, pour la régression logistique. Cette approche sera utilisée pour des problèmes de prédiction (devenir de patients ou type cellulaire) à partir de l'expression des gènes. La principale problématique sera de prendre en compte la réponse pour écarter les variables non pertinentes. Nous mettrons en avant le lien entre la construction des algorithmes et la fiabilité des résultats.Dans une seconde partie, motivés par des questions relatives à l'analyse de données "single-cell", nous proposons une approche probabiliste pour la factorisation de matrices de comptage, laquelle prend en compte la sur-dispersion et l'amplification des zéros (caractéristiques des données single-cell). Nous développerons une procédure d'estimation basée sur l'inférence variationnelle. Nous introduirons également une procédure de sélection de variables probabiliste basée sur un modèle "spike-and-slab". L'intérêt de notre méthode pour la reconstruction, la visualisation et le clustering de données sera illustré par des simulations et par des résultats préliminaires concernant une analyse de données "single-cell". Toutes les méthodes proposées sont implémentées dans deux packages R: plsgenomics et CMF
Contributions à l'analyse de données fonctionnelles multivariées, application à l'étude de la locomotion du cheval de sport by Amandine Schmutz( )

1 edition published in 2019 in French and held by 1 WorldCat member library worldwide

With the growth of smart devices market to provide athletes and trainers a systematic, objective and reliable follow-up, more and more parameters are monitored for a same individual. An alternative to laboratory evaluation methods is the use of inertial sensors which allow following the performance without hindering it, without space limits and without tedious initialization procedures. Data collected by those sensors can be classified as multivariate functional data: some quantitative entities evolving along time and collected simultaneously for a same individual. The aim of this thesis is to find parameters for analysing the athlete horse locomotion thanks to a sensor put in the saddle. This connected device (inertial sensor, IMU) for equestrian sports allows the collection of acceleration and angular velocity along time in the three space directions and with a sampling frequency of 100 Hz. The database used for model development is made of 3221 canter strides from 58 ridden jumping horses of different age and level of competition. Two different protocols are used to collect data: one for straight path and one for curved path. We restricted our work to the prediction of three parameters: the speed per stride, the stride length and the jump quality. To meet the first to objectives, we developed a multivariate functional clustering method that allow the division of the database into smaller more homogeneous sub-groups from the collected signals point of view. This method allows the characterization of each group by it average profile, which ease the data understanding and interpretation. But surprisingly, this clustering model did not improve the results of speed prediction, Support Vector Machine (SVM) is the model with the lowest percentage of error above 0.6 m/s. The same applied for the stride length where an accuracy of 20 cm is reached thanks to SVM model. Those results can be explained by the fact that our database is build from 58 horses only, which is a quite low number of individuals for a clustering method. Then we extend this method to the co-clustering of multivariate functional data in order to ease the datamining of horses' follow-up databases. This method might allow the detection and prevention of locomotor disturbances, main source of interruption of jumping horses. Lastly, we looked for correlation between jumping quality and signals collected by the IMU. First results show that signals collected by the saddle alone are not sufficient to differentiate finely the jumping quality. Additional information will be needed, for example using complementary sensors or by expanding the database to have a more diverse range of horses and jump profiles
Non-smooth optimization for the estimation of cellular immune components in a tumoral environment by Quentin Klopfenstein( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

In this PhD proposal we will investigate new regularization methods of inverse problems that provide an absolute quantification of immune cell subpopulations. The mathematical aspect of this PhD proposal is two-fold. The first goal is to enhance the underlying linear model through a more refined construction of the expression matrix. The second goal is, given this linear model, to derive the best possible estimator. These two issues can be treated in a decoupled way, which is the standard for existing methods such as Cibersort, or as a coupled optimization problem (which is known as blind deconvolution in signal processing)
Equipment Behavior Modelling for Fault Diagnosis and Deterioration Prognosis in Semiconductor Manufacturing by Hamideh Rostami( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Moving toward advanced technologies requires the modern industries, in particular, the semiconductor, to keep their equipment at a high utilization level and lowenvironmental risk. production deficiencies such as process variations and unexpected equipment breakdowns have made it difficult (if not impossible) to stay at high-grade product yield and significant equipment utilization. in this thesis, the aim is to propose efficient equipment behavior prognosis, and equipment failure diagnosis approaches in batch manufacturing processes that are pervasive modes in today's semiconductor fab. with the advancement of sensor information technology, efficient data-driven approaches are proposed for both prognostic and diagnostic purposes. in the fault diagnosis, this research firstly applies the support vector machine (svm) classifier to detect the abnormal observations. the normal process dynamics are then decomposed into different clusters by k-means clustering. principal component analysis (pca) is used to model each part of the process dynamics. fault fingerprints can be extracted finally by consolidating the out of control scenarios after projecting the abnormal observations into the pca models. in prognostics, an equipment deterioration modeling and monitoring approach for batch processes is developed with two aims: exploiting the temporal fdc (fault detection and classification) data to characterize the equipment behavior and modeling the deterioration trend with the potential causes. by using the discrete wavelet transformation (dwt), the temporal data are decomposed into approximation and detail components to detect two types of deterioration caused by macro- and micro-level variations. several scenarios of case studies are conducted based on the practical dataset provided by a local IC maker. the results show that the proposed approaches can effectively prognose the equipment behavior and diagnose the equipment failure with the correct causes
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.95 (from 0.90 for Equipment ... to 0.99 for Fonction d ...)

Alternative Names
Lambert, Sophie

Languages