WorldCat Identities

Kassler, Andreas 1968-

Overview
Works: 18 works in 19 publications in 1 language and 19 library holdings
Roles: the, Editor
Publication Timeline
.
Most widely held works by Andreas Kassler
Proceedings of the 1st Workshop on Wireless Broadband Access for Communities and Rural Developing Regions (WIRELESS4D'08, co-located with M4D 2008), 11-12 December 2008, Karlstad University, Sweden by Workshop on Wireless Broadband Access for Communities and Rural Developing Regions( Book )

2 editions published in 2008 in English and held by 2 WorldCat member libraries worldwide

On the Cost-Optimality Trade-off for Service Function Chain Reconfiguration by Coimbra, Portugal, 4-6 Nov. 2019 IEEE CloudNet 2019 - 8th IEEE International Conference on Cloud Networking( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Optimal placement of Virtual Network Functions (VNFs) in virtualized data centers enhances the overall performance of Service Function Chains (SFCs) and decreases the operational costs for mobile network operators. Maintaining an optimal placement of VNFs under changing load requires a dynamic reconfiguration that includes adding or removing VNF instances, changing the resource allocation of VNFs, and re-routing corresponding service flows. However, such reconfiguration may lead to notable service disruptions and impose additional overhead on the VNF infrastructure, especially when reconfiguration entails state or VNF migration. On the other hand, not changing the existing placement may lead to high operational costs. In this paper, we investigate the trade-off between the reconfiguration of SFCs and the optimality of the resulting placement and service flow (re)routing. We model different reconfiguration costs related to the migration of stateful VNFs and solve a joint optimization problem that aims to minimize both the total cost of the VNF placement and the reconfiguration cost necessary for repairing a suboptimal placement. Numerical results show that a small number of reconfiguration operations can significantly reduce the operational cost of the VNF infrastructure; however, too much reconfiguration may not pay off should heavy costs be involved
Resilient SDN based Small Cell Backhaul Networks using mm Wave Bands by Mobile and Multimedia Networks, June 21-24, 2016, Coimbra, Portugal IEEE WoWMoM 2016 - Seventeenth International Symposium on a World of Wireless( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Robust Optimization for Energy-Efficient Virtual Machine Consolidation in Modern Datacenters by Robayet Nasim( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Energy efficient Virtual Machine (VM) consolidation in modern data centers is typically optimized using methods such as Mixed Integer Programming, which typically require precise input to the model. Unfortunately, many parameters are uncertain or very difficult to predict precisely in the real world. As a consequence, a once calculated solution may be highly infeasible in practice. In this paper, we use methods from robust optimization theory in order to quantify the impact of uncertainty in modern data centers. We study the impact of different parameter uncertainties on the energy efficiency and overbooking ratios such as e.g. VM resource demands, migration related overhead or the power consumption model of the servers used. We also show that setting aside additional resource to cope with uncertainty of workload influences the overbooking ratio of the servers and the energy consumption. We show that, by using our model, Cloud operators can calculate a more robust migration schedule leading to higher total energy consumption. A more risky operator may well choose a more opportunistic schedule leading to lower energy consumption but also higher risk of SLA violation
SDN-Enabled Resiliency, Monitoring and Control in Computer Networks by Jonathan Vestin( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

Next generation computer networks aim to provide a single network architecture, which can support any type of service, ranging from high-bandwidth video streaming to low-latency industrial automation. Those services have a wide range of network requirements that must be supported by a single converged network, which puts high requirements on flexibility, interoperability, and resilience. In contrast, traditional networks have been defined for a single use case and typically employ static configurations and have limited interoperability because they rely on closed equipment, making it difficult to add the new features required for such network convergence. Recently, Software Defined Networking (SDN) and Network Function Virtualization (NFV) have been proposed as solutions for increased network flexibility. By separating and logically centralizing the network control plane, SDN allows for dynamic control of the network infrastructure. NFV, on the other hand, enables flexibility and scalability through the virtualization and orchestration of network functions. In this thesis, we investigate how SDN and NFV can be used to make next generation networks more reliable, flexible and programmable. We focus mainly on three areas: resiliency, monitoring, and control. First, we look at the usage of SDN to enable in-network resiliency in wireless access, backhaul and industrial automation networks. Next, we design and evaluate FastReac, a switch program that allows industrial automation networks to partially offload their distributed application logic to the data plane, reducing end to end latency and increasing network resiliency. Finally, we propose combining FastReact control with in-network telemetry event detection, significantly increasing the monitoring capacity by selectively discarding redundant telemetry information in the data plane
Optimized Service Chain Placement Using Genetic Algorithm by IEEE Conference on 24-28 June Paris, France Network Softwarization (NetSoft)( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Network Function Virtualization (NFV) is anemerging technology to consolidate network functions onto highvolume storages, servers and switches located anywhere in thenetwork. Virtual Network Functions (VNFs) are chainedtogether to provide a specific network service. Therefore, aneffective service chain placement strategy is required tooptimize the resource allocation and consequently to reduce theoperating cost of the substrate network. To this end, we proposefour genetic-based algorithms using roulette wheel andtournament selection techniques in order to place service chainsconsidering two different placement strategies. Since mappingof service chains sequentially (One-at-a-time strategy) may leadto suboptimal placement, we also propose Simultaneous strategythat places all service chains at the same time to improveperformance. Our goal in this work is to reduce deployment costof VNFs while satisfying constraints. We consider Geantnetwork as the substrate network along with its characteristicsextracted from SndLib. The proposed algorithms are able toplace service chains with any type of service graph. Theperformance benefits of the proposed algorithms arehighlighted through extensive simulations
Towards Resilient and Reconfigurable Software-defined Wireless Backhaul Networks by Ricardo Santos( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

The increase of mobile devices and services over the last decade has led to unprecedented mobile traffic growth. To cope with the increasing demands, fifth generation (5G) network architectures have been designed to provide the required capacity using a large number of small cells (SCs). However, a dense deployment of SCs requires a robust and scalable backhaul to transport the access traffic towards the Internet. In this thesis, we explore the application of the Software-defined Networking (SDN) paradigm for the management of a wireless backhaul. With SDN, the data and control planes are separated and the network is managed by a centralized entity. To that end, we provide multiple contributions that focus on achieving resilient and reconfigurable wireless backhaul networks. Firstly, we propose an SDN-based architecture to manage the wireless backhaul. Our architecture is integrated in practical testbed environments, where we use an SDN controller to configure the forwarding plane and wireless backhaul links. Secondly, we evaluate SDN-based resiliency in the wireless backhaul. We achieve that by implementing fast-failover resiliency with OpenFlow group tables and by using the bidirectional-forwarding detection protocol (BFD) to monitor the state of the backhaul links. Finally, we develop algorithms that calculate the necessary reconfiguration operations to transition between different wireless backhaul topologies, while minimizing the impact on existing user traffic. We consider that the backhaul nodes can be powered on/off and are equipped with steerable antennas that can be aligned to form links with different neighbors. Our optimization problems are modeled as mixed integer linear programs (MILP) that are optimally solved using exact mathematical programming methods. In addition, we develop greedy-based heuristic algorithms that solve the same problems and obtain good quality solutions in short time
On the energy cost of robustness for green virtual network function placement in 5G virtualized infrastructures by Marotta Antonio( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Next generation 5G networks will rely on virtualized Data Centers (vDC) to host virtualized network functions on commodity servers. Such Network Function Virtualization (NFV) will lead to significant savings in terms of infrastructure cost and reduced management complexity. However, green strategies for networking and computing inside data centers, such as server consolidation or energy aware routing, should not negatively impact the quality and service level agreements expected from network operators. In this paper, we study how robust strategies that place virtual network functions (VNF) inside vDC impact the energy savings and the protection level against resource demand uncertainty. We propose novel optimization models that allow the minimization of the energy of the computing and network infrastructure which is hosting a set of service chains that implement the VNFs. The model explicitly provides for robustness to unknown or imprecisely formulated resource demand variations, powers down unused routers, switch ports and servers, and calculates the energy optimal VNF placement and network embedding also considering latency constraints on the service chains. We propose both exact and heuristic methods. Our experiments were carried out using the virtualized Evolved Packet Core (vEPC), which allows us to quantitatively assess the trade-off between energy cost, robustness and the protection level of the solutions against demand uncertainty. Our heuristic is able to converge to a good solution in a very short time, in comparison to the exact solver, which is not able to output better results in a longer run as demonstrated by our numerical evaluation. We also study the degree of robustness of a solution for a given protection level and the cost of additional energy needed because of the usage of more computing and network elements
Resilient Software Defined Networking for Industrial Control Networks by Communications and Signal Processing, December 2-4 2015, Singapore ICICS 2015 - The 10th International Conference on Information( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

Software Defined Networking (SDN) is currently a hot topic in the area of Datacenter Networking or Enterprise Networks as it has the promise to radically simplify network management and operation. However, it has not been considered so far as a promising candidate for Industrial Control Networks mainly because of the deterministic performance requirements and the dedicated design of those networks to fulfil strict performance guarantees. In this paper, we propose a resilient SDN based architecture for Industrial Control Networks and show that by combining several SDN based fast failover technologies using per-link Bidirectional Forwarding Detection (BFD), preconfigured primary and backup paths and flexible packet duplication orchestrated by an SDN controller, we can reduce significantly the control latency and provide more stringent performance guarantees even under lossy and failing links
Context-based dynamic meshed backhaul construction for 5G heterogeneous networks by Gia Khanh Tran( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Five-G heterogeneous network overlaid by millimeter-wave (mmWave) access employs mmWave meshed backhauling as a promising cost-efficient backhaul architecture. Due to the nature of mobile traffic distribution in practice which is both time-variant and spatially non-uniform, dynamic construction of mmWave meshed backhaul is a prerequisite to support the varying traffic distribution. Focusing on such scenario of outdoor dynamic crowd (ODC), this paper proposes a novel method to control mmWave meshed backhaul for efficient operation of mmWave overlay 5G HetNet through Software-Defined Network (SDN) technology. Our algorithm is featured by two functionalities, i.e., backhauling route multiplexing for overloaded mmWave small cell base stations (SC-BSS) and mmWave SC-BSS' ON/OFF status switching for underloaded spot. In this paper, the effectiveness of the proposed meshed network is confirmed by both numerical analyses and experimental results. Simulations are conducted over a practical user distribution modeled from measured data in realistic environments. Numerical results show that the proposed algorithm can cope with the locally intensive traffic and reduce energy consumption. Furthermore, a WiGig (Wireless Gigabit Alliance certified) device based testbed is developed for Proof-of-Concept (PoC) and preliminary measurement results confirm the proposed dynamic formation of the meshed network's efficiency
Energy Efficient Line-of-Sight Millimeter Wave Small Cell Backhaul 60, 70, 80 or 140 GHz? by Mobile and Multimedia Networks, June 21-24, 2016, Coimbra, Portugal WoWMoM 2016 The IEEE 17th International Symposium on a World of Wireless( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

QoS Enabled WiFi MAC Layer Processing as an Example of a NFV Service by 13-17 April 2015, London 1st IEEE Conference on Network Softwarization (NetSoft)( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

A SDN Controller Architecture for Small Cell Wireless Backhaul using a LTE Control Channel by Mobile and Multimedia Networks, June 21-24 2016, Coimbra, Portugal WoWMoM 2016 - IEEE 17th International Symposium on a World of Wireless( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Automated Analysis and Profiling of VirtualNetwork Functions: the NFV-Inspector Approach by Verona, Italy, 27-29 November 2018 IEEE Conference on Network Function Virtulization and Software defined Networks( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Discovering insights about Virtual Network Function (VNFs) resource demand characteristics will enable cloud vendors to optimize their underlying Network Function Virtualization (NFV) system orchestration and dramatically mitigate CapEx and OpEx spendings. However, analyzing large-scale NFV systems, especially in mobile network environments, is a challenging task and requires tailor-made approaches for each particular application. In this demo, we showcase NFV-Inspector, an open source and extensible VNF analysis platform that is capable of systematically benchmark and profile NFV deployments. Based on its pluggable framework, NFV-Inspector classifies VNFs resource demand characteristics and correlate their Key Performance Indicators (KPIs) with system-level Quality of Service (QoS) measurements
Optimal Steerable mmWave Mesh Backhaul Reconfiguration by IEEE Global Communications Conference (GLOBECOM)( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Future 5G mobile networks will require increased backhaul (BH) capacity to connect a massive amount of high capacity small cells (SCs) to the network. Because having an optical connection to each SC might be infeasible, mmWave-based (e.g. 60 GHz) BH links are an interesting alternative due to their large available bandwidth. To cope with the increased path loss, mmWave links require directional antennas that should be able to direct their beams to different neighbors, to dynamically change the BH topology, in case new nodes are powered on/off or the traffic demand has changed. Such BH adaptation needs to be orchestrated to minimize the impact on existing traffic.This paper develops a Software-defined networking-based framework that guides the optimal reconfiguration of mesh BH networks composed by mmWave links, where antennas need to be mechanically aligned.By modelling the problem as a Mixed Integer Linear Program (MILP), its solution returns the optimal ordering of events necessary to transition between two BH network configurations. The model creates backup paths whenever it is possible, while minimizing the packet loss of ongoing flows. A numerical evaluation with different topologies and traffic demands shows that increasing the number of BH interfaces per SC from 2 to 4 can decrease the total loss by more than 50%. Moreover, when increasing the total reconfiguration time, additional backup paths can be created, consequently reducing the reconfiguration impact on existing traffic
Automating Ethernet VPN deployment in SDN-based Data Centers by 2017. Valencia, Spain Fourth International Conference on Software Defined Systems (SDS) 2017. 8-11 May( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Layer 2 Virtual Private Network (L2VPN) is widely deployed in both service provider networks and enterprises. However, legacy L2VPN solutions have scalability limitations in the context of Data Center (DC) interconnection and networking which require new approaches that address the requirements of service providers for virtual private cloud services. Recently, Ethernet VPN (EVPN) has been proposed to address many of those concerns and vendors started to deploy EVPN based solutions in DC edge routers. However, manual configuration leads to a time-consuming, error-prone configuration and high operational costs. Automating the EVPN deployment from cloud platforms such as OpenStack enhances both the deployment and flexibility of EVPN Instances (EVIs). This paper proposes a Software Defined Network (SDN) based framework that automates the EVPN deployment and management inside SDN-based DCs using OpenStack and OpenDaylight (ODL). We implemented and extended several modules inside ODL controller to manage and interact with EVIs and an interface to OpenStack that allows the deployment and configuration of EVIs. We conclude with scalability analysis of our solution
MPTCP PathFinder - finding your ways to aggregated bandwidth by Jonas Karlsson( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

Many networks are multi-path; mobile devices have multiple interfaces, data centers have redundant paths and ISPs forward traffic over disjoint paths to perform load-balancing. Multi-path TCP (MPTCP) is a new mechanism that transparently divides a TCP connection into subflows and distributes them over a host's network interfaces. While this enables multi-homed systems like e.g. smartphones to use several interfaces and thus different, and mostly disjoint, network paths for a single transmission, most end-systems are still single-homed. With one interface, standard MPTCP creates only a single subflow, making single-homed systems unable to benefit from MPTCP's functionality. In this paper we propose PathFinder, an MPTCP extension that tries to estimate the number of subflows required to fully utilize the network capacity, enabling single-homed hosts to reap the benefits of MPTCP. We evaluate MPTCP with PathFinder and compare its performance to standard MPTCP. The evaluation shows that PathFinder is able to open a limited but sufficient amount of subflows to significantly increase the throughput when compared to using standard MPTCP
Service Migration in Virtualized Data Centers by Kyoomars Alizadeh Noghani( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

Modern virtualized Data Centers (DCs) require efficient management techniques to guarantee high quality services while reducing their economical cost. The ability to live migrate virtual instances, e.g., Virtual Machines (VMs), both inside and among DCs is a key operation for the majority of DC management tasks that brings significant flexibility into the DC infrastructure. However, live migration introduces new challenges as it ought to be fast and seamless while at the same time imposing a minimum overhead on the network. In this thesis, we study the networking problems of live service migration in modern DCs when services are deployed in virtualized environments, e.g., VMs and containers. In particular, this thesis has the following main objectives: (1) improving the live VM migration in Software-Defined Network (SDN) enabled DCs by addressing networking challenges of live VM migration, and (2) investigating the trade-off between the reconfiguration cost and optimality of the Service Function Chains (SFCs) placement after the reconfiguration has been applied when SFCs are composed of stateful Virtual Network Functions (VNFs). To achieve the first objective, in this thesis, we use distinctive characteristics of SDN architectures such as their centralized control over the network to accelerate the network convergence time and address suboptimal routing problem. Consequently, we enhance the quality of intra- and inter-DC live migrations. Furthermore, we develop an SDN-based framework to improve the inter-DC live VM migration by automating the deployment, improving the management, enhancing the performance, and increasing the scalability of interconnections among DCs. To accomplish the second objective, we investigate the overhead of dynamic reconfiguration of stateful VNFs. Dynamic reconfiguration of VNFs is frequently required in various circumstances, and live migration of VNFs is an integral part of this operation. By mathematically formulating the reconfiguration costs of stateful VNFs and developing a multi-objective heuristic solution, we explore the trade-off between the reconfiguration cost required to improve a given placement and the degree of optimality achieved after the reconfiguration is performed. Results show that the cost of performing the reconfiguration operations required to realize an optimal VNF placement might hamper the gain that could be achieved
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.96 (from 0.95 for Proceeding ... to 0.96 for Proceeding ...)

Languages
English (19)