Front cover image for Prise en compte d'informations a priori en sélection génomique dans un dispositif d'hybrides de tournesol (Helianthus annuus L.)

Prise en compte d'informations a priori en sélection génomique dans un dispositif d'hybrides de tournesol (Helianthus annuus L.)

La sélection génomique (GS) est un outil puissant pour prédire les phénotypes ou les valeurs génétiques d'individus encore non observés, sur la base d'un panel à la fois phénotypé et génotypé. Les modèles mixtes GBLUP habituellement utilisés prennent en compte tous les marqueurs simultanément, en postulant que leurs effets suivent tous la même distribution gaussienne. Les connaissances des mécanismes biologiques sous-jacent à la variation phénotypique ne sont donc pas pris en compte dans une telle modélisation. Le but de cette thèse est d'intégrer dans des modèles GBLUP des connaissances a priori, comme des régions génomique impliquées dans la variation des caractères d'intérêt ou encore des réseaux de gènes, afin d'évaluer le potentiel d'amélioration de la précision de prédiction. Ces modèles ont été appliqués à l'espèce de tournesol Helianthus annuus L., sur trois caractères (la floraison, le rendement et la sénescence foliaire) dans 13 environnements différents. L'un des principaux défis des études sur les hybrides de tournesol est de modéliser la vigueur hybride, ou hétérosis. Différentes hypothèses, incluant la dominance, la superdominance et l'épistasie ont été proposées pour clarifier les mécanismes génétiques sous-jacents au phénomène de l'hétérosis, mais leur importance n'est pas clairement connue. Dans ce contexte, la première partie de cette étude a eu pour but de tester l'efficacité de la GS dans une population d'hybrides provenant du croisement de 36 lignées femelles avec 36 lignées mâles. Pour cela des modèles prenant en compte des effets non-additifs ont été expérimentés, et les résultats validés expérimentalement en champ sur deux années. La prédiction des valeurs génétiques des hybrides ayant été concluante, nous avons ensuite cherché des informations a priori à intégrer à ces modèles. Des SNPs impliqués dans la variation des trois caractères d'intérêt ont été recherchés à l'aide de plusieurs modèles de GWAS (additifs et non-additifs). De plus, dans la perspective de tester des modèles prenant en compte des interactions épistatiques, des SNPs localisés dans des réseaux de gènes connus ont été recherchés. La dernière partie de cette thèse a eu pour but d'intégrer aux modèles GBLUP ces régions génomiques impliquées dans la variation des caractères. Deux méthodes ont été utilisées pour cela, à savoir la modélisation des informations a priori dans la partie aléatoire (modèle MultiBLUP) ou dans la partie fixe des modèles. Ces méthodes ne montrent pas d'amélioration significative des précisions de prédiction par rapport aux modèles GBLUP sans information a priori
Computer File, French, 2017