Front cover image for Half-metal magnets Heusler compounds for spintronics

Half-metal magnets Heusler compounds for spintronics

L'amélioration des techniques de dépôts et l'évolution de la compréhension de la physique de la matière condensée a conduit à la découverte de phénomènes nouveaux en électronique de spin (spintronique). En particulier, le retournement de l'aimantation par couple de transfert de spin et couple spin-orbite, ainsi que le développement de dispositifs basés sur la propagation d'ondes de spin ont fait de l'amortissement magnétique de Gilbert un paramètre central pour les futures technologies de stockage et de traitement de l'information. Dans cette étude, la prédiction de valeurs très faibles d'amortissement dans les alliages d'Heusler demi métaux magnétiques Co2MnZ est expérimentalement observée et directement corrélée à la structure électronique sous-jacente. En effet, en substituant l'élément Z dans des couches minces monocristallines de haute qualité de Co2MnZ (Z= Al, Si, Ga, Ge, Sn, Sb) faites par épitaxie par jet moléculaire, les propriétés électroniques telles que le gap de spin minoritaire, la position du niveau de Fermi et la polarisation en spin peuvent être accordées et leurs conséquences sur la dynamique de l'aimantation sont analysées. Les résultats expérimentaux nous permettent de comprendre la relation existante entre la structure électronique mesurée et la valeur d'amortissement magnétique, ainsi que de les comparer aux calculs ab initio. Les valeurs d'amortissement entre 4.1 x10-4 et 9 x10-4 pour Co2MnSi, Co2MnGe, Co2MnSn et Co2MnSb sont les plus petites valeurs jamais reportées pour des couches conductrices et constituent une preuve expérimentale qui confirme les prédictions théoriques sur ces alliages d'Heusler demi métaux magnétiques. Ensuite, la relation entre l'amortissement magnétique de Gilbert et le temps de désaimantation ultra-rapide induit par pulse laser dans la série d'alliages quaternaires Co2MnSixAl1-x à polarisation en spin variable est étudiée. Cette partie vise à vérifier des modèles théoriques qui essaient d'unifier ces deux quantités vivant sur des échelles de temps différentes. Finalement, les propriétés structurales et magnétiques de super réseaux Mn3Ga/Co2YZ sont étudiées dans le but de combiner un amortissement de Gilbert très faible, un gap de spin minoritaire ainsi que l'aimantation perpendiculaire aux plans des couches, une caractéristique indispensable pour des dispositifs à faible consommation d'énergie
Computer Program, English, 2019