Front cover image for Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas

Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas

Karolina Stepniak (Author), Magdalena A. Machnicka (Author), Jakub Mieczkowski (Author), Anna Macioszek (Author), Bartosz Wojtas (Author), Bartlomiej Gielniewski (Author), Katarzyna Poleszak (Author), Malgorzata Perycz (Author), Sylwia K. Krol (Author), Rafal Guzik (Author)
Chromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas. Gliomas are tumors often associated with epigenetics-related gene deregulation. Here the authors reveal an atlas of active enhancers and promoters in benign and malignant gliomas by performing whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples
Downloadable Article, English, 2021
NATURE RESEARCH, 2021