Front cover image for Contribution à la modélisation Bayésienne de l'état de santé d'un système complexe : application à l'industrie du semi-conducteur

Contribution à la modélisation Bayésienne de l'état de santé d'un système complexe : application à l'industrie du semi-conducteur

Pour maintenir leur compétitivité, les industries du semi-conducteur doivent être en mesure de produire des circuits intégrés en technologies avancées, avec des temps de cycle de plus en plus courts et à des coûts raisonnables. Un des axes d'amélioration réside dans le traitement des défaillances des équipements de production tenus responsables de plus de 50%des rejets produits. Cette thèse se fixe comme objectif de contribuer au développement d'une boucle réactive partant d'une dérive produit à la mise en place d'une solution appropriée tout en assurant un meilleur compromis entre disponibilité des équipements, coûts d'exploitation, qualité et compétitivité du produit. Joignant l'expertise humaine et les événements réels, nous nous sommes proposé ici de développer une méthodologie générique permettant de construire un modèle d'estimation du comportement des équipements de production (Equipment Health Factor EHF) à partir d'un raisonnement mathématique centré sur un formalisme probabiliste. L'approche a été amenée à sa validation expérimentale sur des outils, à base de réseaux Bayésiens, que nous avons développés. Les résultats obtenus amènent des éléments de décision permettant à l'industriel d'intervenir au plus tôt pour envisager par exemple de maintenir l'équipement avant qu'il n'ait dérivé. Cette thèse a été préparée dans le cadre du projet européen IMPROVE en collaboration avec STMicroelectronics, Lfoundry et Probayes
Computer Program, French, 2012